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ABSTRACT

General results of interpolation (e.g., Nevanlinna-Pick) by elements in
the noncommutative analytic Toeplitz algebra F°° (resp., noncommuta-
tive disc algebra A,,) with consequences to the interpolation by bounded
operator-valued analytic functions in the unit ball of C* are obtained. Non-
commutative Poisson transforms are used to provide new von
Neumann type inequalities. Completely isometric representations of the
quotient algebra F>/J on Hilbert spaces, where J is any w*-closed, 2-
sided ideal of F*°, are obtained and used to construct a w*-continuous,
F®° / J-functional calculus associated to row contractions T = [T}, ..., Tn)
when f(T1,...,Ts) = 0 for any f € J. Other properties of the dual algebra
Fo°/J are considered.

In [Po5], the second author proved the following version of von Neumann’s in-
equality for row contractions: if Ty,...,T, € B(H) (the algebra of all bounded
linear operators on the Hilbert space H) and T = [T1,. .., T,] is a contraction, i.e.,

Soi  T;T} < Iy, then for every polynomial p(X1,...,Xy,) on n noncommuting
indeterminates,

(1) HP(Tl, o ’T")HB(H) < ”p(sly e )Sn)”B(]:Z)v

where Si,...,S, are the left creation operators on the full Fock space

F? = F*(H,) (we refer to Section 1 for notation and background material).
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As in [Po5], the noncommutative disc algebra A, is the norm closed subalgebra,
in B(F?) generated by Si,...,S, and the identity, and the Hardy (noncommu-
tative analytic Toeplitz) algebra F> is the WOT-closed algebra generated by A,
in B(F?).

It was proved in [Po8] that if T = [T3,...,T,] is a contraction, then the map

®7: C*(S1,...,50) = B(H); ®1(Si, -+ 84,8}, - SL) =Ty - T, T} - T}

J1 L Jp?
1<i4y,...,%,J1,---,Jp < n, is a completely contractive linear map, and ®r|4,
is a homomorphism. An elementary proof of this as well as an extension to a
more general setting was obtained in [Po9], by the second author, using noncom-
mutative Poisson transforms on C*-algebras generated by isometries (we refer to
Section 3 for a sketch of the proof).

Let J be a closed, 2-sided ideal of A4, with J C Ker ®r and let Ny be the
orthogonal of the image of J in F2. For each i = 1,...,n, let B; := Py, Si|n,.
Using noncommutative Poisson transforms [Po9], we will prove in Section 3 that,

for a large class of row contractions T = [T1, ..., T,] (including Cy-contractions),
there is a unital, completely contractive, linear map ®: C*(By, ..., B,) — B(H)
such that

®(B, - BB} -+-B}) =T, T,T} - Tj,

J1 kTN
1< ity ik dLyee s p S e
The noncommutative dilation theory for n-tuples of operators [Fr], [Bu], [Pol],
[Po2] was used in {Po6| to obtain an F*-functional calculus associated to any
completely non-coisometric contraction (in short c.n.c.) T = [T1,...,T,]. More
precisely, it was shown that the map ¥r: F*° — B(H) defined by

\I,T(f) = f(Tla' o ,Tn) = SOT—}.E& f(rTla' . 77'Tn)

is a WOT-continuous and completely contractive homomorphism. We will show
that if J is a WOT-closed, 2-sided ideal of F*° with J C Ker ¥, then the map

p(Bl,...,Bn) l—-‘)p(Tl,...,Tn)

can be extended to a WOT-continuous, completely contractive homomorphism
from W(Bjy,...,B,), the WOT-closed algebra generated by the compressions
Bi = PNJS,'|NJ, 1= 1, ...,n, to B(H)

Let us recall that F* has A, (1) property (see [DP1]), therefore the w* and
WOT topologies coincide on F*°. An important step in proving the above-
mentioned results is an extention of Sarason’s result [S] to F*°. More precisely,
we will show that if J is a WOT-closed, 2-sided ideal of F*°, then the map

W: F*/J - B(Nj), ¥(f+J) =Py, fIn,
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is a w*-continuous, completely isometric representation. In particular, for every
feFr=,
diSt(fa J) = “PN,f|NJH

We present in this paper two proofs of this result: one is based on the noncom-
mutative commutant lifting theorem [Po3] (see [SzF] and [FFY] for the classical
case) and the characterization of the commutant of S, ..., S, from [Po7], and the
other is based on noncommutative Poisson transforms [Po9] and representations
of quotient algebras. This is a key result which leads to the noncommutative
interpolation theorems of Caratheodory (obtained previously in [Po7]) and of
Nevanlinna—Pick in the noncommutative analytic Toeplitz algebra F'*°. Let us
mention just one consequence of our results to the interpolation by bounded ana-
lytic functions in the unit ball of C*. We will show that if Ay, ... A are k distinct
points in By, the open unit ball of C*, W3,..., Wy € B(K) (K is a Hilbert space),
and the operator matrix

11— (A, ) ij=1,..,k

is positive definite, then there is an operator-valued analytic function F: B, —
B(K) such that

sup |F(Q)]| <1 and F(N)=W;
¢€B,

forany j=1,...,k.

In fact, we obtain more general results of interpolation by elements in F'*
(resp. A,) with consequences to the interpolation by bounded analytic functions
in the unit ball of C™.

We take this opportunity to thank Gilles Pisier for useful comments on this
paper.

After this paper was submitted for publication, we received a preprint from
Davidson and Pitts [DP3], which has significant overlap with Section 2 of our
paper. The principal overlapping parts are Theorem 2.4, Theorem 2.8, and
Corollary 2.10. However, our proofs are quite different.

1. Notation and preliminary results

Unless explicitly stated, n stands for a cardinal number between 1 < n < Rg. Let
‘H,, be an n-dimensional Hilbert space with orthonormal basis ej,es,...,e,. We
consider the Full Fock space [E] of H,,
F? = FA(Ha) = DU,
k>0
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where H8 = C1 and HE* is the (Hilbert) tensor product of k copies of H,,. We
shall denote by P the set of all p.€ F?(H,) of the form

p=ag+ Z Q.5 € V€, V- Q ey, m €N,

where ag, @, ..., € C. The set P may be viewed as the algebra of the polynomials
in n noncommuting indeterminates, with p ® ¢, p,q € P, as multiplication. For
any bounded operators T3, ...,T;, on a Hilbert space ‘H, define

p(Tl, ... ,Tn) = aply + Z ail...,'kT,'lT'i2 cee Tik-

Let F;} be the unital free semigroup on n generators g, . . ., g, and the identity
e. For each a € F}, define

{ei1®e,~2®~~®eik, if & = gi,9i, - Gip»
ea = .
1, ifa=e.

It is easy to see that {e,: & € F}} is an orthonormal basis of F2. We also use
F! to denote arbitrary products of operators. If T, ..., T, € B(H), define

T _{T‘ilng'”ﬂka ifa:ghgiz'“gik’
o .
Iy, fa=e

The length of a € F} is defined by |a| = k, if @ = ¢i, i, - gir, and || = 0, if
a =e. For each i =1,...,n, the left creation operator

S;: F2 5 F% isdefined by Sip=e; @1, o € FL

It is easy to see that Si,...,S, are isometries with orthogonal ranges. As in
[Pob], A, is the norm closure of the algebra generated by Si,...,S5, and Ir2,
and F* is the weak operator topology closure of A,,. Alternatively, we let F*
be the set of those ¢ € F? such that

lelloo := supf{lle ® pll2: p € P, |Ipllz < 1} < c0.

For ¢ € F*°, define ¢(S1,...,8S,): F2 = F2 by ¢(S1,...,5.)% = ¢ ® 9. The
norm ||¢||e coincides with the operator norm of (Si,...,Sy). It will be useful
later to view ¢ € F°° as being an element in F*° and conversely. With this
identification, A, is the closure of P in the || - ||,o-norm.
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We recall from [Po7] the characterization of the commutant of Si,...,S,.
Define the flipping operator U: F2 — F? by

Ule;, e, ® - Qej,) =€ Q- R ey, Qe

and let ¢ := Uyp. It is easy to see that U is a unitary operator, which satisfies
Ulp®9y) = ¥ ®@, and U = I. An operator A € B(F?) commutes with
Si,...,5, if and only if there exists ¢ € F* such that Ah = h ® ¢~), h e F2.
Notice that 4 = U*¢(S1,...,S.)U.

In [Po2], the second author defined ¢ € F* to be inner if ¢(Si,...,S,) is an
isometry, and outer if ¢{Sj,..., Sy) has dense range. A complete description of
the invariant subspace structure of F°° was obtained in [Po2] (even in a more
general setting), using a noncommutative version of the Wold decomposition (see
[Pol1]). A family of inner operators {y;: i € I} is called orthogonal, if whenever
i # j, F2® @; is orthogonal to F2 ® ¢;; or equivalently, ; ® F2 is orthogonal to
©; @ F2. Tt follows from [Po2; Theorem 2.2] that a subspace M of F? is invariant
under Sy,...,5, ifand only if M = @,c; F 2 ® @;, for some family of orthogonal
inner operators.

The second author obtained in [Po4] an inner-outer factorization which implies
that any n € F*° can be factored as n = ¢ ® 1, where ¢ is inner and v is outer.
The same factorization result was proved for elements of 72 in [APo], where
n € F? was said to be outer if there exists a sequence of polynomials p,, € P such
that 9 ® p, — 1 in the norm of F2 (this last result was also obtained recently
in [DP1]). Let us mention that we proved in [APo] that the noncommutative
analytic Toeplitz algebra in n noncommuting variables F*° is reflexive. Recently,
Davidson and Pitts [DP1] proved that this algebra is hyper-reflexive. They also
studied in [DP2] the algebraic structure of F*° (in their notation £,).

Now let us recall some general facts about duality in Banach spaces. Let X be
a Banach space with predual X, and dual X*, and let S C X. The preannihilator
of S in X, is the set 1S = {f € X.: {f,z) = 0 for all z € S}, and the annihilator
of Sin X* is theset St = {f € X*: (z, f) =0 forall z € S}. If S is w*-closed, it
is well known that (+S)* = X/S, (+t8)* =S, (X./18)* =S, and (+8)* =S+
(see [Ru]).

The predual of B(H) is the space of trace class operators ¢;(#), under the
trace duality. That is, if T € ¢;(H) and A € B(H), then (T, A) := tr(TA). A
w*-closed subspace S of B(H) has property A, if for every w*-continuous linear
map f: S = C, there exists h,k € H such that for all T € S, f(T) = (Th,k).
Moreover, if for every € > 0, h and k can be chosen so that ||A||||h|| < (1+€)||fll, S
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has property A; (1) (we refer to [BFP] for more information). If n > 2, Davidson
and Pitts [DP1] proved that F* C B(F?) has property A; (1), and Bercovici [B]
proved that My (F*) has property A; (1) for each k > 1 (i.e., F* has property
Ay (1).

We refer to [Arl], [P], and [Pi] for results on completely bounded maps and
operator spaces.

Let J be a WOT-closed, 2-sided ideal of F*° and define

My ={pQ¢:pe e .7:2}”'”2, and
Ny =F? e M,;.

Recall from [S] that a subspace N' C # is semi-invariant under a semigroup
of operators ¥ C B(H) if for every 71,12 € 3, PyT1 Py T2 Py = PyThToPy. It
is well known that if Ni, M, are invariant subspaces under ¥ and Ny C A then
N1 &N, is semi-invariant under ¥.

LemMmA 1.1: If J is a WOT-closed, 2-sided ideal of F*°, then the subspaces N;
and UN; are invariant under each S}, i =1,2,...,n.

Proof: Since J is a left ideal, M is invariant under Si,...,S, and, hence,
N is invariant under S7,...,S%. Moreover, since J is a right ideal, the set
{¢ : ©(S1,...,8,) € J} is dense in M. Similarly, one can prove that UN; is
invariant to each S}, ¢ =1,2,...,n. |

PROPOSITION 1.2: Let J be a w*-closed, 2-sided ideal of F*® and g € +J C
(F*°).. For each ¢ > 0, there exist 1,v2 € N satisfying |[¢1]2]|t2]l2 <

(1 + €)|lgll such that for every n € F*®, g(n) = (n ® v1,¢2). Conversely, if
Y1,%2 € Ny and g(n) := (n ® 11, 2) for any n € F*°, then g € *J.

Proof: Let g € 1J C (F*°), and let € > 0. Since F*™ has the A; (1) property,
find 1, 2 € F? satisfying |1 ]|2]l¢2ll2 < (1 + €)llg]| such that for every & € F*°,
(9,€) = (£ ® p1,p3). Factor p; = m ® 12, where 7j; is outer and 7j; is inner.
Hence, there exist a sequence of polynomials p,, € P such that p, ®7; — 1 in the
norm of F2, and F2 ® 1, is a closed subspace of F2. Let P, be the orthogonal
projection onto F2 ® 1, and write Py, 2 = 12 ® 7o for some 12 € F2. Then for
each £ € F™,

9(&) = € ®p1,p2) = (@M ® N2, 02) = (P, (E® M @ M), 02)
= (£ @M ® N2, Py, (p2)) = (€ ® M ® 12,92 @ m2) = (£ @11, %2).

The last equality follows because the operator on F?2 that multiplies from the
right by 7 is an isometry (this is the equivalent to 7 inner).
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We will show that 12 € ;. Let £ € J. Since J is a right ideal, £ ® p,, € J for
each n. Hence, 0 = g(£®p,) = (Qpn @M1, P2) — (§,12). Therefore, (£,1) = 0.

Since {p € F2: ¢(S1,.-.,5n) € J} is dense in M we conclude that ¢ € Nj.
Recall that A is invariant under S* and let ¢1 = Py, (). For each o € F},
g(ea) = (ea @ m,¥2) = (m, S5(¥2))
= (m, Prn; Sa(¥2)) = (Pn; (M), Sa(12))
= (th, S5 (¥2)) = (€a @ Y1, 10).
The converse is straightforward. This completes the proof. |

As a consequence of Proposition 1.2, we obtain the following,.

PRrROPOSITION 1.3: For every ¢ € F® dist(p,J) = ||Pnx,¢(S1,...
Consequently, the map ®: F>/J — B(N) defined by

(I)((p + J) = PNJ(p(Sla' . 'aSn)INJ

is an isometric homomorphism.

,Sn)lNJ “

Proof: If ¢ € J it is clear that Py, 9¥(S1,...,5:)|n, = 0. Hence, for every
@ € F, ||Pn,9(S1, .-, Sn)in, Il < dist(g, J).

Suppose now that ¢ ¢ J. Since (LJ)* = F>/J, for every € > 0 there exists
feLJ, fll < 1such that |f(e)] > dist{e,J)—e. By Proposition 1.2, there exist
€1,& € Ny such that [[&l2]l€2]l2 < 1 and f(p) = (p(S1, .., 5n)é1,&2). Hence,
|1Pr, 0(S1,- -+, Sn)la, || > dist(p, J) — €. Since € > 0 is arbitrary, we finish the
proof. |

It should be noted that Proposition 1.3 is all one really needs to obtain the
scalar version of Carathéodory or Nevanlinna—Pick interpolation in F*°,

We know from [Po5], [Po6] that the set P of all polynomials in Sy,..., Sy is
WOT-dense in F°. Indeed, if f = ZaGFI Gq€q 18 in F* and

= E rllageq
aEF,t

for any 0 < r < 1 then SOT-lim, ,; fr = f and ||frllec < ||fllec (see [Po6]). On
the other hand, f, € An. Indeed, since || 3=k 2aSall = (X o=k lae|?)1/2, we
have

3 Zaasan—zr 2 Jaa|?)/?

k=0 lal=k

< (Zrk)llfllz.
k=0
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Therefore, Zaé]l"}'[ rlla, S, converges in norm, so that f. € A,. Taking into
account that P is norm dense in A, the result follows.
We will use the same notation as above if J is a closed, 2-sided ideal in A,,.

LEMMA 1.4: Let J C A, be a 2-sided ideal of A,, and let J,, be the WOT-closed,
2-sided ideal generated by J in F*®. Then J,, = JVOT and N;, = Nj.

Proof: We need to show that JWOT is a 2-sided ideal in F*°. Consider 9, ¢ €
F, fe JYOT andlet {g;} C J be a net WOT-convergent to f.

Since J is a 2-sided ideal of A,, ¢,g:9» € J for any r,7" € (0,1) and any 1.
Using the remarks preceding this lemma, it is easy to see, by taking appropriate
limits, that ¢f¢ € JWOT. Now let us show that Ny, = Nj. Since J C Jy, it is
clear that Ny D Nj,. Let f € JVOT | 4 € F?, and choose {g;} C J such that
WOT-lim; g; = f. If z € N5 we have

(2, f ® ¥) = lim(z, (51, .., §a)9) = 0.

Therefore, z € N, , which proves that N C N, . This completes the proof.
|

2. Non-commutative interpolation in F*

Let H, K be Hilbert spaces and I be a set of indices with dimK = card I = 7.
Denote ®,H := @icrH; where H; := H, and notice that, under the canoni-
cal identification ®,H = H ® K (Hilbert tensor product), each operator X €
B(H ® K) can be seen as a matriz of operators in B(H), i.e., X = [Xagla,gel
with X,3 € B(H). For any U C B(#), we denote

M, (U) = {{uag] € B(®yH): uag € U;a, B € I}

It is clear now that {u® Ic; v € U} = M, (U’) (where ' stands for commutant).
Let us recall from [Pol] that T = [T7, ..., Ty] is called Cyp-contraction if T is a
contraction and

(2.1) SOT- lim Y. TTi=0.
a€F,f,|a|=k

For example, if Y ;. T;Ty < pIy for some 0 < p < 1, then [T1,...,T,] is a
Cy-contraction.

The following result is an extension of Sarason’s result [S] and a consequence of
the noncommutative commutant lifting theorem [Po3| and the characterization
of the commutant of {S1,...,S,} from [Po7].
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THEOREM 2.1: Let K be a Hilbert space with dim K = « and let N' C F? be an
invariant subspace for St,...,Sk. If T € B(N ® K) commutes with each X; :=
PnSiln®Ix, i =1,2,...,n, then there is ®(S1,...,5,) := [pa,3(S1,...,5,)] in
M., (F) such that ||®(S1,...,S»)|| =||T|| and

PN@)C[U*(ﬁaﬂ(Sl,...,Sn)U] = TP.N'@IC,

where Pygx is the orthogonal projection of 72 ® K onto N ® K, and U is the
flipping operator on F2.

Proof: 1Tt is clear that [Py S1|y, - . ., PvSn|ar] is a Co-contraction and, according
to [Pol], its minimal isometric dilation is [Sy,...,S,]. Therefore, the minimal
isometric dilation of [X1,...,X,] is [S1 ® Ik,...,S, ® Ix]. According to the
noncommutative commutant lifting theorem [Po3], there is A € {S; ® Ix;i =
1,2,...,n} such that |A| = ||T|| and A*|ygx = T*. Therefore, there exists
dap € {S1,-..,5.} such that A = [aag] € M,({S1,...,S.}) C B(@®,F?).
Using the characterization of the commutant of {Si,...,S,} from [Po7}, we find
bap € F such that agg = U*Pap(S1,...,Sn)U, where U is the flipping operator
on F2. Therefore

A=[U"¢ap(S1,-..,8,)U] and Pygx[U*¢ap(S1,---,Sn)U] = TPyak. W

Notice that if n = 1 we find again Sarason’s result [S].

LEMMA 2.2: Let T; € B(H) be such that T := [Ti,...,T,] is a Co-contraction
and let fo5(S,...,S,) € F®,a, 3 € I, be such that [fap(S1,- .., Sn)]apser is in
B(®,F?) (y=cardI). Then [fop(T1,...,Tn)] € B(®,H) and

[fap(Th, - -, Ta)lll < l[fap(Sts- -, Sl

Proof: According to [Pol], the minimal isometric dilation of T = [T1,...,Ty] is
[$1®1Ic,...,S, ®I] for some Hilbert space £. According to Theorem 3.6 from
[Pob), for any fag € F=, fag(Th,---,Tn) = Pu(fap(S1,...,8n) ® Ic)l3. The
rest of the proof is straightforward. |

If ¢ = (¢1,...,¢n) € C* is such that |¢| == (|G)? + -+ P2 < 1, and
f(S1,...,8,) € F, then, according to the F>°-functional calculus [Po6], we in-
fer that |f(¢1,..-,¢)| < F(S1,- .., Sn)||- Therefore, f(¢i,...,¢n) is an analytic

function in B,. Moreover, we deduce the following.
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COROLLARY 2.3: If fog € F®°, o, f € I, card I = v, and [fap(S1,- .., Snlaper
is in B(®4F?2), then ®(() := [fap(€)] is an operator-valued analytic function in
B,.. Moreover, sup;cg, [19(Q)]| < ll[fas(S1,-.., Sa)lll-

A consequence of Theorem 2.1 is the following extension of the Nevanlinna—
Pick problem to the noncommutative Toeplitz algebra F*°.

THEOREM 2.4: Let Aq,..., A be k distinct points in B, and let Wy,... , W}
be in B(K), where K is a Hilbert space with dimX = +y. Then there exists
®(S1,...,5) = [Pa,s(S1,...,Sn)] in M, (F°), such that |®(Sy,...,S,)|| <1
and ®(\;) =W;, j=1,2,...,k, if and only if the operator matrix

Ix — W;W;
(2.2) [’C ALE

1- <)‘J" )‘i> :|i,j:1,2,.‘.,k
is positive definite.

Proof: For each i = 1,...,k, let A; := (A\iy,-.., i) € C" and, for o =
951953 - - - Gim M FL let Aig == Aij, Aij, ... Aij,,, and A, = 1. Define

N = E )\mea, i=1,2,...,n,
aE]F',.t

and notice that, for any ¢ = 3. gt @aa in F2, ($,23,) = $(X).

If ¢ € F°° then (¢, 2y} = (1,$(S1,...,5n)*2x,;), where S1,..., S, are the left
creation operators on the full Fock space F2. It is clear that Stzy;, = Xﬁz}‘ ; for
anyt=1,...,n; j=1,...,k. Denote

N :=span{zy,: j=1,...,k}

and define X; € BN ® K) by X; = PySi|x ® Ix. Since zy,,..., 2, are linearly
independent, we can define T € B(N ® K) by setting

(2.3) T*(Z)‘}, & h) =20 W;h

for any h € K, j = 1,...,k. Notice that for each i = 1,...,k, TX; = X,T.
Indeed,

XIT*(2, ® h) = X} (2r, @ W}h) = S;zn, ® Wi
= inz,\j ® W;h

and

T*X;(Z)\j ®h) = T*()\jiz,\j ® h) = AjiZ)\j ® W;h.
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Since AV is invariant under S}, { = 1,...,n, according to Theorem 2.1, there exists
[¢a‘g(S1, RN Sn)] € M.Y(Foo) such that Pygi [U*(ﬁa,g(sl, RN Sn)U] = TPngk,
and

(2.4) § {#a,8(S1, -, Sa)l Il = T

Let us show that ®(S;,...,S,) := [@a,p(S1,-..,Sn)| satisfies ®();) = W; for
any 7 =1,...,k, if and only if

(25) [PNU*QSQ,B(SIV"?S’IL)U]N] =T
To prove this, notice first that U(zy;) = z»;, 5 =1,...,k, and

(a,5(S15- -+ Sn)2r;120;) = Da,8(Aj){2x;5 22 )-

Due to these relations, (2.3), and (2.5), it is easy to see that, for any j =1,...,k
and h,h' € K, we have

(U*Ga,p(S1s- - -, Sa)UN(2n, ® h), 25, @ B') = (21,23, ){®(Ns)h, ')
= (T(zx, ® h), 25, ® I') = (2, @ h, 22, W} H')
= <ZAJ', Z/\j><th’ hl)
Now, it is clear that ®()\;) = W, for any j = 1,...,k if and only if (2.5) holds.
On the other hand, (2.4) shows that ||®(S1,...,S,)|| <1 if and only if ||T|| < 1.
The latter condition is equivalent to

(9,9) —(T"g,T*g) >0

for any g = Ele zx; ® hj in N ® K. This inequality is equivalent to

k
(2:6) > (o (I = WWihi k) 20,

i,j=1

for any h; € K. Since
<Z)‘“Z)‘].) = z)‘,-()‘j) = Z _Xia)\ja
aEFx

=14+ (A, A) + (g, A+
_ 1
1- (Aj) >‘z> ’
inequality (2.6) holds if and only if the matrix (2.2) is positive definite. This
completes the proof. |
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COROLLARY 2.5: If n = 1 we find again the Nevanlinna—Pick interpolation
theorem (see [Pic], [N]).

Notice that the proof of Theorem 2.4 works also for arbitrary families {);};¢s
of distinct elements in B,,, the open unit ball of C*.

THEOREM 2.6: Let {\;}jes be distinct elements in B, and let {W;};c; C B(K),
where K is a Hilbert space of dimension . Then there exists ®(Sy,...,S,) in
M., (F>) such that ||®(S1,...,S,)|| <1 and ®(\;) = W, for all j € J if and only

if
Ix - W, W/
'——‘_hza

ij€J
for any {h;}jes C K such that {j : h; # 0} is finite.

Combining Theorem 2.4 with Corollary 2.3, we obtain the following sufficient
condition for interpolation in the open unit ball of C".

COROLLARY 2.7: Let Aq,... )\ be k distinct points in B, and let Wy, ..., W}, be
in B(K). If the matrix

1-w;w;
27 Lot
( ) [1“ <)‘j7)\i> ij=1,...,k

is positive definite, then there is an operator-valued analytic function F: B,, —
B(K) such that

sup [F(ONl <1 and F(\;) = W.

CEB,

forany j=1,...,k.

Arveson [Ar2] showed that there are functions F' in H*(B,, ) for which there are
no f € F* such that f(A) = F()\) for each A € B,,. The next result characterizes
those functions in H*°(B,) which are the image of elements in the unit ball of
F,

THEOREM 2.8: Let F' be a complex-valued function defined on By, such that
|F(¢)| < 1 for all [{| < 1. Then there is f € F*®, ||fllco < 1 such that f(¢{) =

F(¢), ¢ € B, if and only if for each k > 1 and each k-tuple of points Ay,..., A\ €
B,., the matrix

28) {1—5’(?) ()A >}

i,j=1,..,k
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is positive definite. In particular, if (2.8) holds, then F' is analytic on B,,.

Proof: The necessity of (2.8) follows immediately from Theorem 2.4. Conversely,
suppose that F' satisfies (2.8). Let {);}32, be a countable dense set in By,.
According to Theorem 2.4, for each k, there is fi € F* with || fx]lcc <1 and

(2.9) fk()\]) = F()\]) for any j = 1,. . .,k.

Since { fx }32 , is bounded and F*° is a dual space, according to Alaoglu’s theorem,
there is a subsequence {fi, }32, such that fi converges in the w*-topology to
an element f € F*°, ||fllco < 1. Since w* and WOT topologies coincide on F>°
and the F*°-functional calculus for Cy-contractions is WOT-continuous, we infer
that

1r}§—rynoo fkm ()‘jla ceey )‘jn) = f()\jl, ey )\jn)v where )\j = ()\jl, veay /\jn)~
Using (2.9), we have limpm—yo0 fin (Aj1,-- -3 Ajn) = F(Aj1,-..,Ajn). Therefore,
f(Aj)=F(};) forany j =1,2,....

We claim that f(¢) = F(¢) for any ¢ € B,,. Let X be an arbitrary point in
B,. By repeating the preceding argument, there is g € F*°, |[g|| < 1 so that
g(¢) = F(¢) on the set {);}22, U{A}. Since the maps { — g({) and ¢ — f(() are
analytic in B, and coincide on {);}22,, which is dense in B,, we infer that they
coincide on B,,. In particular, we obtain f(A) = F()). Since A was an arbitrary
point in in B, , we deduce that f and F coincide on B,,. In particular, ¢ — F(()
is a bounded analytic function in B,,. This completes the proof. 1

Condition (2.7) is necessary and sufficient for interpolation in F'*° but only
sufficient for interpolation in H*(B,). One can use the classical Cauchy for-

mula for B,, to obtain a necessary condition for Nevanlinna-Pick interpolation in
H*(B,). Recall that for every f € H*(B,) and A € B,,

o fw
0= [, G

where o is the rotation invariant probability measure on 0B,,. Using this formula,
and a standard argument (e.g. like the one used in Section 3 of [CW]) we can
check that if there exists f € H®(B,), ||flloc < 1, such that f();) = w; for
j=1,...,k, then

(2.10) [Ol—_(/\%]i,jﬁ,...,k
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is positive definite. Now, one can easily check that the scalar version of condition
(2.7) is stronger than condition (2.10) (see for example Lemma 4.1 of [CW]).

Let J be a w*-closed, 2-sided ideal of F°°. For any cardinal v, the algebra
M, (F*) is w*-closed in B(&,F?) and M,(J) is a w*-closed, 2-sided ideal of
M, (F*). Recently, Bercovici [B] proved that if the commutant of a w*-closed
subspace of B(H) contains two isometries with orthogonal ranges, then the sub-
space has property Xo 1, which is stronger than property Ax,(1). One can use
this result to show that M., (F*°) has property A, (1).

Another consequence of Theorem 2.1 is the following.

THEOREM 2.9: For any cardinal vy, the map ®: M, (F*>°)/M,(J) = M,(B(N;))
defined by

([fap] + My(J)) = [Pn, fapln,]
is an isometry.

Proof: It is enough to show that

dist([fap), My (J)) = I[Pun, U fi(S1, - - ., Su)Ulun 1,
where U: F2 — F? is the flipping operator. For each [gog] € M, (J), we have

lilfas + gaslll = NU* (fap + 9ap)Ulll = N[Pun, U™ (fap + gap)Uluns ]Il

Since gap € J, according to Proposition 1.3, we have Py, gop|n, = 0. Since U is
an unitary operator with U = U*, it is easy to see that Py, U*gnsU|un, = 0.
Combining this with the above inequality, we obtain

(2.11) dist ([fap], My(J)) 2 I[Pun,; U™ fapUluns -

It remains to prove the converse inequality. Since U*fogU commutes with
S1,...,8n, and UNj is invariant to Sj,..., Sk, (U* fogU)*, it is clear that
(Pun, U fapUlun,]

commutes with Py, Siluny, ® I, for each i = 1,2,...,n. We can apply Theorem
2.1 to find [ag] € My(F*) such that [|[Yaglll = [Pon,U* fagUlun, Il and
[Pun, U*bopUlun,] = [Pun,U* fapUlun;). According to Proposition 1.3, we
infer that [@eg] := [Yap — fap] € M,(J). Therefore,

IPursU* fapUlun, Ml = fap + aplll 2 dist([fags], My(J)).
Combining this with (2.11), we complete the proof. ]

Recall that for each k > 1, M (F*/J) = Mi(F*)/My(J) (see [R]). Hence, as
an immediate consequence of Theorem 2.9, we obtain the following.
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COROLLARY 2.10: The map ®: F*°/J — Py, F*®|n, given by ®(f) = Pur, fn,
is a completely isometric representation.

Let P,. be the set of all polynomials in F? of degree < m, and denote
FR, = FXN(F?20Py). Setting J = FZL,, in Corollary 2.10, we can deduce the
Carathéodory interpolation theorem on Fock spaces [Po7].

COROLLARY 2.11: Let p € P,, be fixed. Then

diSt(pv ]:;om) = ”P'Pmp(sl’ cee 7Sn)|Pm ”

Let us remark that Theorem 2.9 is no longer true if we replace F*° by the
noncommutative disk algebra A, and J is a closed, 2-sided ideal of A,. To
see this, let A € C™ be of norm one and let J := {¢ € Ap: ¥(A1,...,\) =
0 and (1,1) = 0}. It is easy to see that Nj is the span of 1 and so is N,
(see also Example 3.6). Then J, = {¢p € F®: (4,1) = 0}. If one takes a
polynomial p € P such that (p,1) = 0 but p(Ay, ..., Ay) # 0, then dist(p,J) > 0
but dist(p, J,,) = 0. Therefore,

dist(p, J) # dist(p, Juw) = || Pry,, flnva, | = 1 Pay £l Hl-

However, we will show that A,/J is completely isometrically isomorphic to
Py, Anln,, for certain closed ideals J of A,.

PROPOSITION 2.12: Let A1,...,Ax € B, and define

J={p € A, p(A;) =0 for every j =1,2,...,k}, and
Jw = {p € F®: ¢()\j) =0 for every j = 1,2,...,k}.

Then the map ¥: A,/J — Py, An|n, defined by ¥(f + J) = Pn, fln, is a
completely isometric representation.

Proof: According to Corollary 2.10 and Lemma 1.4, for any f € A,

diSt(f, Jw) = ” PN.waINJw “ = IIPNJfINJI|

Therefore, it is enough to prove that dist(f,J,,) = dist(f,J). Let us define
®: A,/J = F*/J, by ®(¢p +J) = ¢ + J,,. Notice that ® is contractive. We
shall prove that for every ¢ € F* with |l¢ + Jy|| = 1, there exists 1 € A, such
that v + J|| =1 and ®(p + J) = o + Jy.

Assume that ||¢|| = |l¢ + Ju]| = 1 and find @ € A, such that |@g]| < 1
and ¢ — ¢ in the WOT. Since A, /J is finite dimensional, we assume (after
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passing to a subsequence) that ¢ + J converges to ¢ + J in the norm of A,,/J
for some 1) € A,,. Then ||jy+J|| < 1 and there exists a sequence 7 € J such that
©k + Mk — ¥ in the norm topology of A,,. Then np = (M + k) —px 2> ¥ — ¢
in the WOT of F*°. Since n, € J C Jy, for each k and since J, is WOT-
closed, we have that ¢ — ¢ € J,,. Therefore, ¢ + Jy, =+ Jy, = ®(¢+ J). Since
dim A, /J = dim F*/J,, it is clear now that ® is isometric. The argument works
also when passing to matrices, so the map @ is completely isometric. |

Combining Theorem 2.4 with Proposition 2.12, we infer the following
Nevanlinna—Pick interpolation theorem for the noncommutative disc algebra A,,.
For simplicity, we consider only the scalar case.

COROLLARY 2.13: Let \i,...,\x €B,, and wy,...,wx € C. Then the matrix

[ l—wju‘),- ]
1= (A, ) i,j=1,....k

is positive definite if and only if for any € > 0 there exists f € Ay, || flloo < 1+,
such that f(\;) = w; for every j =1,...,k.

3. Poisson transforms and von Neumann inequalities

In [Po9], the second author found an elementary proof of the inequality (1) based
on noncommutative Poisson transforms associated to row contractions. In this
section, we will recall this construction (see [Po9, Section 8]) in a particular case
and use it to obtain new results.

As in [Pol], T = [T1,...,Ty] is called Cy-contraction if T' is a contraction and
(3.1) SOT- lim Y TTi=0.
a€Ft |al=k

Recall that the sequence {ZI o=k TaTg: k > 0} of positive operators is non-
increasing, and that (3.1) holds if and only if >, IT*R|12 — 0 for every
heH.

Suppose that T' = [T7,...,Ty] is a Cp-contraction and let

A= (I =Y TIHE.
i=1
Since

Yo TAMTL =Y LT - Y LT,

|a|=k la|=k |a|=k+1
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it is clear that Y., o+ TaA Ty = Iy — ligyo0 Dy mpq1 TaTo = In.
The Poisson kernel K = K(T') associated to T = [T1,...,Ty] is the linear map

K:H—>F'®@H definedby Kh= Y e,®ATh.
aEF,‘{

Since Y, T,AT! = Iy, K is an isometry. It is easy to check that, for each
a €T, (St ®I)Kh = KT%h. Hence, for every o, € F},

(3.2) K*[SaS; ®I|K =T, Tj.

The map ¥: B(F?) - B(H) defined by ¥(A) = K*[AQ® I|K is clearly unital,
completely contractive (hence, completely positive), and w*-continuous. More-
over, for each o, 8 € F}, ¥(8,S53) = ToTj. The restriction of ¥ to F°°, which
is denoted by ¥r, provides a WOT-continuous F*°-functional calculus for the
Co-contractions T = [T, ..., Ty}, which is a particular case of [Po6]. That is,

(3.3) Up: F™ — B(H) satisfies Pr(o(S1,...,5)) = o(T1,...,Tx)

for every ¢ € F'*°.

Suppose now that T' = [T},...,T,] is a row contraction. For each 0 <7 < 1,
let K, = K, (T) be the Poisson kernel associated to [rTy,...rTy], which is clearly
a Cy-contraction. Let C*(Sy,...,S,) be the C*-algebra generated by Sy, ..., Sn,
the extension through compacts of the Cuntz algebra O,, (see [Cu]). The Poisson
transform associated to T = [T1,...,Ty] is the linear map

(34)  @7:C"(S1,...,5,) = B(H)" defined by ®r(f) = lim K;[f @ IIK,

(in the uniform topology of B(H)). It is easy to see that ®r is unital, completely
contractive, and for every o, 8 € Ff, ®1(SoSj) = ToTj. Inequality (1) from the
introduction follows by restricting @7 to A,.

A simple consequence of the noncommutative Poisson transform is the
following result which turns out to be crucial for the rest of this paper.

ProPOSITION 3.1: Let T = [T3,...,T,] be a Cy-contraction with its Poisson
kernel K, and let N be a subspace of F? invariant under St,...,S,. If K takes
values in N @H, then there exists a unital, completely contractive, w*-continuous
map &: B(N) — B(H) such that for every o, € F}, ®(B,Bp) = ToTj;, where
By = Py Sk|n forany k=1,...,n.

Proof: Since N C F2 is an invariant subspace of S}, ..., S}, for every a, 8 € F{,
PnSoSj|n = BaBj. By hypothesis, K = (Py ® I JK. Hence, and according to
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(3.2), for each o, f € F;, we have

ToTj = K*[SaS; ® 1K = K™ (Py ® 1)[SaS; ® I)(Py ® K

(3.5
) = K*[PxSoS5Py ® I|K = K*[B.Bj ® I|K.

To complete the proof, define &: B(N) — B(H) by ®(A) = K*[AQ I|K. |

Remark 3.2: If T =[Ty,...,T,] is a contraction and its Poisson kernel K, takes
values in N ®H for every 0 < r < 1, then there is a unital, completely contractive
map ®: C*(By,..., B.) = B(H) satisfying ®(B,Bj) = ToTj; for all o, 3 € F}.

Proof: 1t follows from (3.5) that
. * * I T a Blrpx _ *
lim K7 [BoBj ® I[K, = lim r®\Tor1T5 = T, T,

Hence, the map B,Bj ~— T,Tj;, defined on span{B,Bj : o, € Ft}, is
completely contractive. By [Arl], it can be extended to a unital, completely
contractive map ®: C*(By, ..., B,) = B(H) satisfying ®(B,Bj) = T.T}; for all
o, B eFr. 1

To illustrate Proposition 3.1 and Remark 3.2, we will consider a row contraction
T = [T1,...,T,] satisfying the following commutation relations:

(3.6) T;T; = \j;T;T; forevery1<i<j<m,

where A;; € Cfor 1 <i<j<n.

Example 3.3: There exists a subspace N' = N({\;;}) of F?, invariant under
St,...,S%, such that the operators By = PnSkln, k = 1,...,n, satisfy (3.6)
and for every row contraction T = [T3,...,T,] satisfying (3.6), there exists a
unital completely contractive linear map ®: C*(By, ..., Bn) — B(H) such that
®(BqBj;) = T, T} for any o, 8 € Fy.

Proof: Fix k«€ N, and consider a = g;, g;, - - - g, € F satisfying iy <49 <--- <
ix, and a permutation 7 € Il on {1,2,...,k}. Then, from (3.6),
T,r(a) = Cw(a)Ta, where €x(a) = H )\i"(].)iﬂ(l)
R
and T() = Gi, 1) Gingay """ Gimiry- L€ N({Xi;}) be the subspace of F? defined by

Z Er(a)r(a) @ = Gi19iy " Gix € Ffip <. <igke N}-
welly

N} = —p—{
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It is easy to see that if T = [T,...,T,] is a Cy-contraction and satisfies (3.6),
then its Poisson kernel takes values in N ({)\;;}) ® H. Indeed,

Kh=>" Y Zew(a)®AT;(a)h=§: Y. v®AT:h,

where va = 3 cn, €r(a)€n(a) € N{{Ai;}). One can verify directly, from the
definition of M({\;;}), that this space is invariant under S7,..., S, although
it is easier to check that N({X;;}) = N, where J is the WOT-closed, 2-sided
ideal in F*° generated by {e; ® €; — Ajie; ® e;: 1 < i < j < n}. Then, from
Proposition 1.3, the By’s satisfy (3.6). The rest of the statement of Example 3.3
is an immediate consequence of Remark 3.2. [ |

The case where \j; = 1 for 1 <i < j < n appears in [Ath], (P09}, and [Ar2]. In
this situation, condition (3.6) means that the T}’s are commuting and N ({)\;i})
is the symmetric Fock space. If Aj; = —1 for 1 < i < j < n, then the T}’s are
anti-commuting and N ({\;;}) is the anti-symmetric Fock space.

Example 3.4: If J;, is a WOT-closed, 2-sided ideal generated by some elements in
span{eq: |a| = k}, then a similar result to Example 3.3 holds for any contraction
T = [T4,...,T,] such that $(T1,...,Tn) = 0 for each ¢ € J;.

In Section 4, we will consider the F™-functional calculus associated to row
contractions satisfying (3.6), or as in Example 3.4.

Let ¢ € F* and let Jy be the WOT-closed, 2-sided ideal generated by ¢ in
F*. 1t Ny, # {0}, then there is a nontrivial Co-contraction T = [T, ..., Ty] such
that ¢(T1,...,Ty) = 0. Indeed, define T; := PNJ¢ Si|NJ¢. According to [Pol],
it is clear that T = [Th,...,T}] is a Co-contraction, since the F*-functional
calculus associated to Cy-contractions is WOT-continuous. It is easy to see that
Ty, ..., Tn) = Pn,, $(S1, ..., Sn)|n,, =0 (see also Lemma, 4.4).

LEMMA 3.5: Suppose that T = [T, ..., Ty] is a Cy-contraction with its Poisson
kernel K, and that J is a WOT-closed, 2-sided ideal of F* such that for every
¢ € J, o(Th,...,T,) = 0. Then K takes values in Ny ® H. Consequently,

Ni # (0).
Proof: For any polynomial p € P, p =) aq€q, we have

(Kk,p®h) = ok, TulAh) = <k, (}: aaTa> Ah>

= <k’p(T1, s aTn)Ah>
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for any h,k € H. Since the F*°-functional calculus for Cy-contractions is WOT-
continuous and P is WOT-dense 'in ™ we deduce that for any ¢ € J and
hkeH,

(Kk,o @ h) = (k,o(Th,...,Tp)AR) = 0.

Since M is the closure of J in F2, we see that for every k € H,
1
Kke My®H) =N;®H.

This completes the proof. 1

IfT=[T,...,T,] is a Cyp-contraction, then
Jy ={p € F®: p(T1,...,T;) = 0} = Ker Up
is a WOT-closed, 2-sided ideal of F*°. Similarly,
Jo = {p € An: o(Ty,...,Tn) = 0} = Ker &p

is a closed, 2-sided ideal of A,,. Lemma 3.5 is stated for F'°°, but it holds true also
for A,,. Therefore N;, # {0} and N, # {0}. Let us remark that if [Ty,...,T5]
is just a contraction (not necessarily Cp), then Aj, may be zero.

Example 3.6: (Point evaluations) Let A; € C, ¢ = 1,...,n, be such that
Yo A2 < 1. Then A = [A,...,A,] is a Cp-contraction, and hence, J,, :=
{p € F* : p(A1,...,An) = 0} is a WOT-closed, 2-sided ideal of F*°. It is
known that Ay, = span{z\} where zy = 1+ 3 ;5,(A1e1 + -+ + Ane,)®* and
w(A1,...,An) = {p, z)) for every ¢ € F'* (see [AP:)], [Ar2], and [DP1]). Notice
that if 30 | [\ =1, then J = {p € A, : 9(A1,...,An) = 0} is a closed, 2-sided
ideal of A, but one can check that Ny = {0}.
Combining Proposition 3.1 and Lemma 3.5, we obtain the following.

THEOREM 3.7: Let T = [T, ...,T,] be a Cy-contraction, and let J be a WOT-
closed, 2-sided ideal of F> such that for every ¢ € J, ¢(T1,...,T,) = 0, then
there exists a unital, completely contractive, w*-continuous map ®: B(N;) —
B(M) such that for every a, B € F, ®(B,Bj) = ToTj, where By, = Py, Sk|n,,
k=1,...,n.

One can easily see that there is an A,-version of this theorem corresponding
to closed, 2-sided ideals in A, J C Ker &1 with Nj # {0}. Let T = [T1,...,Tx]
be a contraction, and let J C Ker ®7 be a closed, 2-sided ideal of A,, such that
N # {0}. Notice that Remark 3.2 holds true if we take N' = N.
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Given T = [T1,...,Ty] a Cy-contraction with Poisson kernel K, the best von
Neumann inequality given by Proposition 3.1 comes from the smallest subspace
N of F? which is invariant under S},...,S} and such that K takes values in
Nr ® H. It is not hard to see that N = span {(T*k, Ah)e,: h,k € H;a € F!}.
First notice that A is the smallest A such that K takes values in N ® F2, and
then notice that A is invariant under S7,..., S

n-

4. W(By, ..., B,) and F* /J-functional calculus for row contractions

In this section J will be a w*-closed, 2-sided ideal of F*°. Recall that N is
the orthogonal complement of the image of J in F? and that By = Pn, Sk|n,
for k = 1,...,n. We define W(B;,...,B,) to be w*-closure of of the algebra
generated by the By’s and the identity.

We will prove that F'*°/.J is canonically isomorphic to W(B, ..., B,). We will
describe the commutant of W(Bj, ..., B,) and will show that W(By,...,B,) is
the double commutant of {By, ..., B,}. We will show that W(By, ..., By) has
the A; (1) property and hence the w* and WOT topologies agree on this algebra.
Finally, we will develop a F*°/J-functional calculus for row contractions.

A direct consequence of Proposition 1.2 and Corollary 2.10 is the following,.

THEOREM 4.1: The map ¥: F*°/J — B(N;) defined by

‘I’(Q0+ ']) = PNJ‘p(Sl” . 7Sn)|NJ

is a completely isometric isomorphism onto Py, F*°|y,, and a homeomorphism
relative to the w*-topology on F*/J and the WOT-topology on Py, F>|y,.

Proof: Since the fact that ¥ is a completely isometric homomorphism was
already proved in Corollary 2.10 (see also Section 5), we only have to prove that
¥ is a w*-WOT homeomorphism.

By Proposition 1.2, ¢; +J — ¢+ J in the w* topology iff for every £1,& € Ny,

(0; ® £1,&2) — (@ ® &1,&). This is clearly equivalent to Py, iln, = Pn,@ln,
in the weak operator topology. 1

Using again the noncommutative commutant lifting theorem [Po3], we can
prove the following.

PROPOSITION 4.2: The algebra Py, F® |y, is the WOT-closed algebra generated
by Pu, Si|n,, i =1,...,n, and the identity. Moreover, we have

(4'1) PNJFoolNJ = {PNJU*FooUlNJ}, = {PNJFoolNJ}”'
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Proof: We first show that Py, F*°|y, is weakly closed. Notice that N; is an
invariant subspace of U*S}U for eachi=1,...,n, and

[Pv,U*S1U|nyy -+ Pr, U SRU vy

is a Cy-contraction with the minimal isometric dilation [U*S,U,...,U*S,U]. Ac-
cording to the commutant lifting theorem, X € {Py,U*S;U|yn, : i =1,...,n}
if and only if X = Py, Y|y, for some Y € {U*SU,...,U*S, U} . Using [Po7],
we get Y = f(S1,...,5,), f € F®. Now, it is clear that Py, F®|y, =
{Pn,U*F°U|n,} and, hence, Py, F|pr, is a WOT-closed algebra.

Since the polynomials in Sy,...,S, are WOT-dense in F™, it is clear that
Py, F|y, is the WOT-closed algebra generated by Py, Sily;, i=1,...,n, and
the identity. The second equality in (4.1) follows in a similar manner. 1

PROPOSITION 4.3: The algebra W(By,...,By) has property A;(1). Moreover,
W(By,...,Bn) = Py, F®|y,.

Proof: Let f € W(B,...,By). satisfy ||fl| = 1. Since
W(B1,. .., Bn)s = ci(N5)/*W(By,. .., Ba),

for each € > 0, find g € ¢;(Ny) satisfying ||g]| < 1+eand f = g+ W(B,...,B,).
Let in,: Ny = F? be the inclusion and notice that (ix,)* = Py,. It is easy
to check that ix, o go Py, € +J C ¢1(F?). Then, by Proposition 1.2, there
exists ¢, ¥ € N satisfying ||o|l2]|¥]l2 < (1 + €)llgll < (1 + €)? such that, for
every 1 € F'°, (ipr, 0o go Py, 1) = (n ® @1, p2). Now, for each noncommutative
polynomial p € P, we have

(f,p(B1,...,Bn)) = (9,p(B1,---, Bn)) = (g, Pn;, P(S1, - -+, Sn)n,)
= (in; 090 PnyyP(S1,.. ., 50)) = (P ® 0, 9)
= (p(S1,-.-, Sn)p, Pny¥) = (Pnyp(Sh, - Sn)lws s ¥)
(p(Bl, B.)e, ).

Since f is w*-continuous, we prove the A;(1) property. The last part of the
theorem follows from Proposition 4.2. ]

Let J be the w*-closed, 2-sided ideal of F*° generated by S3,S3,...,S,. It is
easy to see that N is the closed span of e‘lglc for £k > 0, and that By = --- =
B, = 0. Hence, W(By,..., B,) = W(By), where B1el* = ¥, Since B, is a
unilateral shift of multiplicity one, we use Proposition 4.3 to give an alternative



Vol. 115, 2000 INTERPOLATION AND POISSON TRANSFORMS 227

proof of the well known fact that W(B,) has property A; (1). Moreover, it is also
known (see [BFP, Theorem 4.16]) that W(B;) does not even satisfy property A;.
In that sense, Proposition 4.3 is best possible.

Let us recall from [Pol] that a contraction [T1,...,T,] is called completely
non-coisometric (c.n.c.) if there isno h € #, h #0 such that

ST ITLRIE = (B2, for any k€ {1,2,...}.
jo|=k

Let T = [T1,...,T,] be a c.n.c. contraction and let
Wr: Foo_)B(,H)a ‘IIT(f):f(Tlv"'aTn)a

be the F°-functional calculus associated to T. In this section, we prove that
if J is a WOT-closed, 2-sided ideal of F® with J C Ker U7, then there is a
WOT-continuous, F*°/J-functional calculus associated to T

LEMMA 4.4: Let B = [By,...,By] and let ¥p be the F*°-functional calculus
associated to it. Then

W(Bi,...,Bn) =Up(F®) ={f(B,...,Ba): fe€F }
Proof: According to Proposition 4.3, it is enough to prove that

(42) f(Bl7“‘,BTl):PNJf(Sl,"‘,S’n)lNJ

for any f € F*. Since B; = Py, S;|n;, (4.2) holds for polynomials, and con-
sequently for elements in the noncommutative disc algebra A4,. Since B =
[Bi,...,By] is a Cy-contraction, according to the F*°-functional calculus, we
have

f(By,...,Bn) : = SOT-lim f;(By, .., Ba)
= SOT- lim Pir, £7(S1,-, Sn)lws = Pay f(Ss- -+, Sul,

for any f € F*. ]

THEOREM 4.5: Let T = [T1,...,Ty] be a c.n.c. contraction and let
\I/TZ Foo—)B(H), \I'T(f):f(Tl,...,Tn),

be the F*-functional calculus associated to T. If J is a WOT-closed, 2-sided
ideal of F*° with J C Ker¥r, then the map

(43) ‘I’T“}Z W(Bl, ces Bn) - B(%), \PT’J(f(Bl,‘ . ,Bn)) = f(Tl,. e ,Tn),
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is a WOT-continuous, completely contractive homomorphism.
In particular, for any f € F™,

Wf(T1,-- Tl S W F(By,- .., Ba)l| = dist(f, J).
Proof: We prove first that ¥7 ; is WOT-continuous. Let f;, f € F* with

WOT- llmf,(Bl, .. ,Bn) = f(Bl, e ,Bn).

According to Lemma 4.4, we infer that WOT- limy; Py, filx, = Pn, fin,- Apply-
ing Proposition 4.1, we infer that

(4.4) w-lim(fi + J) = f + J.

For each h,k € H, define ®(f) := {(¥r(f)h, k). Since ¥ is WOT-continuous,
® is WOT-continuous, and hence w*-continuous. On the other hand, ¥(J)} =0,
so that ® € 1J. Since (4.4) holds, we deduce that lim; ®(f;) = ®(f), which is
equivalent to

Bm(fi(T, ., Ta)h, k) = (F(T3, .., Tu)h, k)

for any h,k € H.
According to the von Neumann inequality [Po5|, for any ¢ € J C Ker ¥, we
have

I (Ta, -, Tl = I+ )T, - Tl S U+ #llco

Using Theorem 4.1, we infer that

=||f(By,..., Bl

In a similar manner, one can prove that ¥z ; is a completely contractive homo-
morphism. This completes the proof. ]

The following F*°-extension is related to Example 3.3.

COROLLARY 4.6: Let T = [T3,...,T,| be a c.n.c. contraction satisfying the
following commutation relations:

T;T; = i TiT; forevery1 <i<j<m,

where \;; € C for 1 < i < j < n. If J is the WOT-closed, 2-sided ideal generated
by {e;®@e; — A\jie; ®e; : 1 <i < j <n}in F, then there is a WOT-continuous
functional calculus given by (4.3).
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5. Representations of quotients of dual algebras

Recall that an operator algebra is a closed subalgebra of B(H) and that a dual
algebra is a unital w*-closed subalgebra of B(#). In the late 60’s, Cole (see [BD,
pages 270-273]) proved that quotients of uniform algebras are operator algebras.
Shortly after, Lumer and Bernard proved that quotients of operator algebras are
isometrically isomorphic to operator algebras. In [Pi, Chapter 4] Pisier noted
that these methods also show that quotients of operator algebras are completely
isometrically isomorphic to operator algebras. In this section we will follow these
ideas closely to obtain simple representations of quotients of dual algebras. Asan
application, we give an alternative proof of Corollary 2.10 that does not depend
on the commutant lifting theorem of [Po6).

PRroOPOSITION 5.1: Let A be a unital, w*-closed subalgebra of the bounded
operators on a separable Hilbert space H such that for each k > 1, My(A)
has property A;(1), and let J be a w*-closed, 2-sided ideal of A. Then there
exists a subspace £ C €3 ® H such that the map U A/J — B(£) defined by
U(a+ J) = Pe(Iy, ® a)|¢ is a completely isometric representation.

Proof: Let £ € Mp(A)/Mi(J), ||z|| = 1. We claim that for every ¢ > 0, there
exists a subspace E C £5(H) such that the map

(5.1) V,: A/J = B(E) defined by ¥,(a+J)=Pg(Im, @a)lE

is a completely contractive homomorphism which satisfies ||(Ip, ® ¥;)(z)|| >
1 —e If we take direct sums €@, .., ¥z, where z runs over the unit ball of
M (A)/Mg(J), kK > 1, and € > 0, we get a completely isometric embedding of
A/J. Tt will be clear from the construction that it is enough to take countably
maps ¥, so the proposition follows.

Let € > 0 and write £ = y + Mg(J), where y = (y;;) € M(A). Find f €
(Mi(A)/Mp()* = My(J)L, || fI| = 1, such that {z, f) = 1. Since (+ Mx(J))** =
Mi(J)t, we can find g € *Mk(J), |lgll < 1, such that |(y,g) — (v, f)| < €
Then |(y,g)| > 1 —e. Since My(A) has the A; (1) property, find ¢,v € €5(H),
ll¢liz = ||4ll2 = 1 such that for each n € Mk (A), (9,7} = (np,¥).

Let Ey = span{ny : n € Mi(A)} C £5(H), Bz = span{éyp : £ € My(J)} C
Ei, and E = E;, © E,. Since E; and E; are invariant under Mj(A), the map
®g: My (A) - B(€5(H)), defined by ®g(n) = Pgen|E, is a completely contractive
homomorphism that vanishes on M (J). Hence, the map

Uy(a+J) = 2p(In, ®a)
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of (5.1) is a well defined completely contractive representation.
Since ¢ € Ey, 1 € E4+, and Ej is invariant under the adjoints of My(A), it is
easy to check that (g,y) = (yp,¥) = (yPe(), Pe(¢)). Hence,

[(®&(y) PEg, Pev)| = [(9,9)| 2 1 - e

For each i,j < k, let E;; = ®p(ei; ® 14). The E;;’s are matrix units on E,
which decompose E = H1OH2®- - -®H,. E;; is the orthogonal projection onto H;
and E;; is a partial isometry from H; onto H;. Note that E;; commutes with the
range of U, E;; = E;; B EqjEjj, and ®g(e;;®ui5) = Pe((ei;®1a) (M, Ouij)) =
Pr(ei;®14)Pe(Inm, ®yi;) = Eij Vo (yij+J). Let p; = Ej; Ppp and ¢; = E;; Py
Then

(PE(y)Pee, Pa) = Y (®s(ei; ® yi;) Pep, Pet)
i,j<k
= Y (EijVu(2i;) Pey, Pe)
i,j<k
= Y (Wo(zi)Erj0;, Eraths)
i,j<k
= (I, ® L)(@)3, D),

where ¢ = (E11¢1, .- ., E1gor) € 25(E), ¥ = (Entr, - - ., Ewty) € €5(E). Since
16113 = 3 <k 1Bill3 < Xjck losll3 = |1 Pewlld < 1, and, similarly, [|9]l2 < 1,
we get

(T ® T)(@)]| = [(x ® To) (@), )| = [(2E(y) Py, Peg)| > 1 ¢,

which proves the claim. Finally, notice that the map ¥, was determined by
g € *Mi(J) C (Mg(A))s. Since (My(A))s is separable for each k > 1, it is
enough to take only countably many maps. |

The proof of the next corollary follows easily from the proof of Proposition 5.1.
Notice that property A; (1) can be used to give more explicit representations of
quotient algebras than those appearing in Theorem 3.2 of [CW] and Theorem 0.3
of [Mc].

COROLLARY 5.2: Let A be a unital, w*-closed subalgebra of B(H) with the A;(1)
property and let J C A be a w*-closed 2-sided ideal. Then for every T € A,

dist(T, J) = sup{||PE¢T|Ew||B(H): pE H},
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where E,, = span{ag: a € A} O5pan{bp: be J} CH.

Moreover, it is well known that if A C B(#) is a unital w*-closed subalgebra of
B(H), the ampliation A(®) = {I,, ®a: a € A} C B(f,® H) is a unital w*-closed
subalgebra of B({;® H) with the A; (1) property (see e.g., [Az, Section 2]). Since
My (A(>®) = (Mk(A))(oo), it follows that Mj(A°)) has the A (1) property for
every k > 1.

Applying Proposition 5.1 to A() and noticing that I, ® A is canonically
isomorphic to I,, ® A, we obtain the following.

COROLLARY 5.3: Let A C B(H) be a unital, w*-closed subalgebra of B(1) and
let J C A be a w*-closed 2-sided ideal. Then there exists a subspace & C {3 @ H
such that the map U: A/J — B(€) defined by V(a+J) = Pe(ly, ®a)ls is a
completely isometric representation.

An alternative proof for Corollary 2.10, i.e., ®: F®/J — Pn, F*®|y;, defined
by ®(f) = Py, fln, is a completely isometric representation, can be obtained
using Theorem 3.7 and Corollary 5.3 as follows.

Alternative Proof of Corollary 2.10: From Corollary 5.3 (or from Proposition
5.1 if we use that F™ has property Ay, (1)) there exists a subspace £ C £y ® F?
such that the map U: F*/J — B(E), defined by \/17(17) = Penlg, is a completely
isometric homomorphism. Let ¢ € £ and notice that {I;, ® S;: j < n} satisfies
(2.1). Then

S IB(Sa + D els = D I1Pelle, ® S2)ell3 < Y (T, ® S2)lF — 0.

|aj=k |a|=k lal=k

This shows that [¥(Sy + J), ..., ¥(S, + J)] is Co-contractive.

Notice that for each ¢ € J, w(\i(S1+J), o ,@(Sn+J)) = ¥(p+J) = 0. Then,
from Theorem 3.7, there exists a unital, completely contractive, w*-continuous
map ®x: B(N;) — B(E) satisfying ®x(B,) = U(Sy + J) for every o € Fi.
Recall that B, = ®(S,+J). Hence, for each o € F}, U(Sa+J) = ®o®(Sy+J).
Using the w*-continuity of the three maps, we obtain the following commutative

diagram: R
Felg —2, B
QN el 3
B(N7)

Since ® x and ® are completely contractive, and since T is completely isometric,
we conclude that ® is completely isometric. |
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Corollary 2.10 and the following simple lemma can be used to derive Theorem
2.4. Thus, we can prove this result without using the commutant lifting theorem
of [Po3]. Notice that, using a standard w*-continuity argument, we can assume
1.at the W’s of Theorem 2.4 are N x N matrices. We leave the details to the
reader.

LEMMA 5.4: Let Aj = (Aj1,...,Ajn) € Bn, j = 1,...,k, be k different points
in B,. For each iy € {1,...,k} there exists @;, € F™ such that ¢, (i) = 1
and @;,(A;) = 0 whenever ig # j. Consequently, given Wy, ..., Wy € My, there
exists ¢ € My (F) such that ¢()\;) = W; forevery j =1,...,k.

Proof: Fix iy € {1,...,k}. For each j # 4 find ¢ € {1,...,n} such that
Aioq ;é /\jq and define 0]' = Sq - /\qu. Then ej()‘io) = )‘ioq - /\jq 7& 0 and
6;(A;) = 0. Let ¥ = ®;xi,0;. Then ¢();,) # 0 and ¢();) = 0 whenever j # do.
Define ¢;, = ;/)(—;10—)1/) If Wy,..., Wi € My, then ¢ = Zigk W;®p; € MN(Foo)
satisfies p(A;) = W; for i < k. 1
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