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A B S T R A C T  

General results of interpolation (e.g., Nevanlinna-Pick) by elements in 
the noncommutative analytic Toeplitz algebra F ~176 (resp., noncommuta- 
tive disc algebra .An) with consequences to the interpolation by bounded 
operator-valued analytic functions in the unit ball ofC n are obtained. Non- 
commutative Poisson transforms are used to provide new yon 
Neumann type inequalities. Completely isometric representations of the 
quotient algebra F~176 on Hilbert spaces, where J is any w*-closed, 2- 
sided ideal of F ~ ,  are obtained and used to construct a w*-continuous, 
F ~176 calculus associated to row contractions T ---- IT1,..., Tn] 
when f(T1, �9 .., Tn) = 0 for any f C J. Other properties of the dual algebra 
F~176 are considered. 

In  [Po5], the second author  proved the following version of von N e u m a n n ' s  in- 

equal i ty  for row contract ions:  if T 1 , . . . ,  Tn E B(7/)  (the algebra of all bounded  

l inear operators  on the Hilbert  space 7/) and  T -- IT1, . . .  ,T,~] is a contract ion,  i.e., 

~i=1TiT~ < I~,  t hen  for every polynomial  p(X1, . .  Xn)  on n n o n c o m m u t i n g  

indeterminates ,  

(1) _< lip(s1,.. . ,  

where $ 1 , . . .  ,S,~ are the left creat ion operators on the full Fock space 

~-2 = 5c2(7_/,~) (we refer to Section 1 for no ta t ion  and  background mater ial) .  
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As in [Po5], the noncommutative disc algebra An is the norm closed subalgebra 

in B(~  -2) generated by $1 , . . . ,  Sn and the identity, and the Hardy (noncommu- 

tative analytic Toeplitz) algebra F ~176 is the WOT-closed algebra generated by An 
in B(~'2). 

It was proved in [Po8] that if T = [T1,. . . ,  Tn] is a contraction, then the map 

~PT: C*(S , , . . .  ,Sn)--~ B(7-/); ~T(S, ,  " "S ,  kS~, . . .S~*)= Ti, ""T,  kTj: ...T~*, 

1 < i l , . . . ,  i k , j l , . . .  ,jp <<_ n, is a completely contractive linear map, and ~T[r 
is a homomorphism. An elementary proof of this as well as an extension to a 

more general setting was obtained in [Po9], by the second author, using noncom- 

mutative Poisson transforms on C*-algebras generated by isometries (we refer to 

Section 3 for a sketch of the proof). 

Let J be a closed, 2-sided ideal of .An with J C Ker ~T and let Afj be the 

orthogonal of the image of J in ~-2. For each i = 1, . . .  ,n, let Bi := P]cjSil]Cj. 
Using noncommutative Poisson transforms [Po9], we will prove in Section 3 that,  

for a large class of row contractions T = [T1,. �9 �9 Tn] (including C0-contractions), 

there is a unital, completely contractive, linear map ~: C*(B1, . . . ,  Bn) --4 B(7-/) 

such that  
~(B~x . . .  BikB~I . . .  B~p) = T~, . . .  TikT]I . . .  T~p, 

1 <_ i l , . . - , i k , j l , . . . , J p  < n. 
The noncommutative dilation theory for n-tuples of operators [Fr], [Bu], [Poll, 

[Po2] was used in [Po6] to obtain an F~ calculus associated to any 

completely non-coisometric contraction (in short c.n.c.) T = [T1,...,Tn]. More 

precisely, it was shown that  the map ~T: F ~r --+ B(7/) defined by 

q~r(f) = I (T1 , . . . ,  Tn) := SOT- lira f ( rT1 , . . . ,  rTn) 
r - + l  

is a WOT-continuous and completely contractive homomorphism. We will show 

that  if J is a WOT-closed, 2-sided ideal of F ~ with J C Ker kgT, then the map 

p(B1 , . . . ,  Bn) ~ p(T1,. . .  ,Tn) 

can be extended to a WOT-continuous, completely contractive homomorphism 

from kV(B1, . . . ,Bn) ,  the WOT-closed algebra generated by the compressions 

Bi := P]CjSi[jVj, i = 1, . . .  ,n, to B(7-/). 

Let us recall that  F ~ has A1 (1) property (see [DP1]), therefore the w* and 

WOT topologies coincide on F ~ .  An important step in proving the above- 

mentioned results is an extention of Sarason's result [S] to F ~176 More precisely, 

we will show that  if J is a WOT-closed, 2-sided ideal of F ~176 then the map 

~: F ~ / J  -+ B(~fg), qJ(f + J) = P~zjf[]cj 
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is a w*-continuous, completely isometric representation. In particular, for every 

f E  F ~ ,  
dist(f, J)  = []PNj f].N'j] I. 

We present in this paper two proofs of this result: one is based on the noncom- 

mutative commutant lifting theorem [Pc3] (see [SzF] and [FFr] for the classical 

case) and the characterization of the commutant of $1,..  �9 Sn from [Pc7], and the 

other is based on noncommutative Poisson transforms [Pc9] and representations 

of quotient algebras. This is a key result which leads to the noncommutative 

interpolation theorems of Caratheodory (obtained previously in [PoT]) and of 

Nevanlinna-Pick in the noncommutative analytic Toeplitz algebra F ~ .  Let us 

mention just one consequence of our results to the interpolation by bounded ana- 

lytic functions in the unit ball of C '~ . We will show that if A1,... Ak ~re k distinct 

points in Bn, the open unit ball of C n, W1, . . . ,  Wk E B(K:) (~ is a Hilbert space), 

and the operator matrix 

[ - w w: l 

is positive definite, then there is an operator-valued analytic function F: B,~ --+ 

B(K:) such that  

sup HF(()][ _< 1 and F(A~) = Wj 
CEBn 

for any j = 1 , , , , , k ,  

In fact, we obtain more general results of interpolation by elements in F ~176 

(resp. A,~) with consequences to the interpolation by bounded analytic functions 

in the unit ball of C '~. 

We take this opportunity to thank Gilles Pisier for useful comments on this 

paper. 

After this paper was submitted for publication, we received a preprint from 

Davidson and Pitts [DP3], which has significant overlap with Section 2 of our 

paper. The principal overlapping parts are Theorem 2.4, Theorem 2.8, and 

Corollary 2.10. However, our proofs are quite different. 

1. N o t a t i o n  a n d  p r e l i m i n a r y  results 

Unless explicitly stated, n stands for a cardinal number between 1 < n < 1%. Let 

7-/n be an n-dimensional Hilbert space with orthonormal basis el, e2 , . . . ,  en. We 

consider the Full Fock space [E] of 7/,~ 

f 2  = = k, 

k>0 
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where -1./~o = C1 and 7-/~ k is the (Hilbert) tensor product of k copies of 7/n. We 

shall denote by T' the set of all p.E $-2(7/n) of the form 

p = a o +  ~ a Q . . . i k  e i l  Q e i2  @ . . . @ e i k  , m e N ,  
l_<i 1 ..... ik<_n 

l_<k_<m 

where a0, ai,..~k E C. The set ;o may be viewed as the algebra of the polynomials 

in n noncommuting indeterminates, with p | q, p, q E "P, as multiplication. For 

any bounded operators T1, . . .  ,Tn on a Hilbert space 7/, define 

p(T1 , . . . ,Tn)  := aoln + y'~ a~, ,kT,,T,2 . . .  T~. 

Let ~ be the unital free semigroup on n generators g l , . . . ,  g~ and the identity 

e. For each a E ] ~ ,  define 

eQ (~ el2 ~ " ' "  ~ e ik ,  if a = gilgi2 "'" gik, 

e~ := 1, if a = e. 

It is easy to see that {e~: a C F~} is an orthonormal basis of $-2. We also use 

to denote arbitrary products of operators. If T1 , . . . ,  Tn E B(7-/), define 

{ TiaTi2 " "  Tik, i f a  = gi~gi~ ""g ik ,  

T,  := I n ,  i f a  = e. 

The length of a E F~ is defined by lal = k, if a = g~,gi2"" "gi~, and lal = 0, if 

a = e. For each i = 1 , . . .  ,n,  the left creation operator 

Si: $-2 __+ $-2 is defined by SiC = ei | r ~b E $-2. 

It is easy to see that  S 1 , . . . ,  Sn are isometries with orthogonal ranges. As in 

[Po5], A,~ is the norm closure of the algebra generated by $ 1 , . . . ,  Sn and Iy2,  

and F ~176 is the weak operator topology closure of A,~. Alternatively, we let .T ~176 

be the set of those ~ E $-2 such that 

II~lloo := sup{ll~ ~pl12: p e ~ ,  Ilpl12 ~ 1) < ~ .  

For ~o e .TOO, define ~o($1,..., Sn): 9 v2 -+ $-2 by ~o($1,..., S,~)r = ~o | r  The 

norm I1~olloo coincides with the operator norm of ~o($1,..., S,~). It will be useful 

later to view ~o E $-oo as being an element in F ~ and conversely. With this 

identification, A,~ is the closure of 7 ~ in the II " Iloo-norm. 
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We recall from [Po7] the characterization of the commutant of S1 , . . . ,Sn .  

Define the flipping operator U: 272 _..+ 272 by 

U(eii |  @. . .  | ei~) = elk |  @ e~ @e~, 

and let ~5 := U~o. It is easy to see that U is a unitary operator, which satisfies 

U ( ~ | 1 6 2  = r 1 7 4  and U 2 = I. An operator A C B(27 2) commutes with 

$1 , . . . ,  Sn if and only if there exists r c 27oo such that Ah = h | gp, h C 27 2. 

Notice that  A = U*r Sn)U. 

In [Po2], the second author defined ~o c 270~ to be inner if ~ ($1 , . . . ,  S,~) is an 

isometry, and outer if ~o($1,..., Sn) has dense range. A complete description of 

the invariant subspace structure of 270~ was obtained in [Po2] (even in a more 

general setting), using a noncommutative version of the Wold decomposition (see 

[Pol]). A family of inner operators {T~: i C I} is called orthogonal, if whenever 

i ~ j ,  272 | @i is orthogonal to 272 @ ~5j; or equivalently, ~i | 272 is orthogonal to 

~j @272. It follows from [Po2; Theorem 2.2] that a subspace M of 272 is invariant 

under $1 , . . . ,  Sn if and only if M = {~]~iel 272 | ~5i, for some family of orthogonal 

inner operators. 

The second author obtained in [Po4] an inner-outer factorization which implies 

that  any 77 G 270~ can be factored as 7/= ~ | ~, where ~o is inner and r is outer. 

The same factorization result was proved for elements of 272 in [APo], where 

r / � 9  ~-2 was said to be outer if there exists a sequence of polynomials pn �9 P such 

that  r | Pn --+ 1 in the norm of 272 (this last result was also obtained recently 

in [DP1]). Let us mention that we proved in [APo] that the noncommutative 
analytic Toeplitz algebra in n noncommuting variables 27o~ is reflexive. Recently, 

Davidson and Pitts [DP1] proved that this algebra is hyper-reflexive. They also 

studied in [DP2] the algebraic structure of 2700 (in their notation/:~).  

Now let us recall some general facts about duality in Banach spaces. Let X be 

a Banach space with predual X.  and dual X*, and let S C X. The preannihilator 

of 8 in X.  is the set J-S = {f  �9 X.:  ( f , x )  = 0 for all x �9 S},  and the annihilator 

of S in X* is the set ,S • = {f  �9 X*: (x, f} = 0 for all x �9 8}. I f 8  is w*-closed, it 

is well known that  (• = X / S ,  (• • = S, ( X . / •  * = 8, and (• = $•  

(see [au]). 
The predual of B(7-/) is the space of trace class operators c1(7-/), under the 

trace duality. That  is, if T �9 c~(7-/) and A �9 B(~t), then (T,A) := t r (TA).  A 

w*-closed subspace 8 of B(7"/) has property A1 if for every w*-continuous linear 

map f :  ,S --+ C, there exists h, k �9 7 /such that  for all T E S, f (T )  = (Th, 1r 

Moreover, if for every e > 0, h and k can be chosen so that  Ilhllllhll <_ (l+e)llfll  , 8 
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has property A1 (1) (we refer to [BFP] for more information). If n > 2, Davidson 

and Pitts [DP1] proved that F ~ C B(7. 2) has property A1 (1), and Bercovici [B] 

proved that Mk(F ~)  has property AI(1) for each k _> 1 (i.e., F ~ has property 

A~ o (1)). 
We refer to [Arl], [P], and [Pi] for results on completely bounded maps and 

operator spaces. 

Let J be a WOT-closed, 2-sided ideal of F ~176 and define 

.My = { ~ | 1 6 2  E J , r  C 9r2} 1l112, and 

AZj =9 r2 O A4j. 

Recall from IS] that a subspace Af C ?4 is semi-invariant under a semigroup 

of operators E C B(H) if for every T1,T2 E E, P]~T1P~fT2P]~ =- PHTIT2P]~. It 

is well known that  if A/I, Af2 are invariant subspaces under E and Af2 C All then 

A/'I @ A/'2 is semi-invariant under E. 

LEMMA 1.1: If  J is a WOT-closed, 2-sided ideal o f F  ~ ,  then the subspaces j~rj 

and UAfj are invaritmt under each S~, i = 1 ,2 , . . .  ,n. 

Proos Since J is a left ideal, J ~ g  is invariant under S 1 , . . . , S n  and, hence, 

Afj is invariant under S~ , . . . ,  S*. Moreover, since J is a right ideal, the set 

{~ : ~ ($1 , . . . ,  S,~) E J} is dense in J~4g. Similarly, one can prove that  UAfj is 

invariant to each S* i = 1, 2, ., n. | ~ ,  , o  

PROPOSITION 1.2: Let J be a w*-closed, 2-sided ideal of F ~ and g E • J C 

(F~176 For each e > 0, there exist r162 C Afj satisfying 11r162 

(1 + ~)llgll such that for every ~1 C F ~,  g(~l) = (~1 | r r Conversely, i f  

r ~d2 C d~f J and g(Tl) := (7/| r r for any ~1 C F ~176 then g E x J. 

Proof." Let g E •  c (F~176 and let e > 0. Since F ~176 has the ~k 1 (1) property, 

find ~ol, qo2 E 7.2 satisfying I[~x[]2[1~2[[2 _< (1 + e)[Igl[ such that  for every ~ E F ~176 

(g ,~)  = (~ | ~01,~2 ). F a c t o r  ~Pl = 771 | 112, where 7)1 is outer and f/2 is inner. 

Hence, there exist a sequence of polynomials Pn E P such that p,~ | --4 1 in the 

norm of 7.2, and ~2 | 7/2 is a closed subspace of ~-2. Let Pn2 be the orthogonal 

projection onto 7 .2 | and write P~2~2 = r | ~2 for some r E 7 "2. Then for 
each ~ E ~-oo 

= (r | /]1 | r/2, P,~(~2)) = ( ~ |  |162  | = (r | nl,~/)2) �9 

The last equality follows because the operator on 7.2 that  multiplies from the 

right by ~/2 is an isometry (this is the equivalent to f/2 inner). 
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We will show that  r E JV'j. Let ~ E J. Since J is a right ideal, ~ | Pn E J for 

each n. Hence, 0 = g(~| = (~|174162 --+ <~,r Therefore, (~,r = 0. 
Since {~ E ~-2: ~ ($1 , . . . ,  Sn) E J} is dense in 2~4j we conclude that  r E Afj. 

Recall that  Afj is invariant under S* and let r = PJgj (r/i). For each a C ]F~, 

~ ( e , )  : <e, | 71, r = <~,, S~(r 

: ( r / l ,  PJV'j S* ( r  ~-- (PNj (771), S *  ( r  

--- <r s~(r = (e~ | r r 

The converse is straightforward. This completes the proof. | 

As a consequence of Proposition 1.2, we obtain the following. 

PROPOSITION 1.3: For every ~ E Foo,dist(~,J)  -- IIPAfj~(Si,...,Sn)IAfjII. 
Consequently, the map ~: Foo/ J -~ B(J~f j) defined by 

a2(~ + J) = PAfj~(SI,..., Sn)ijgj 

is an isometric homomorphism. 

Proof: If r E J it is clear that Pjvjr = O. Hence, for every 

C F ~176 I[P~fj~(S,,..., Sn)[~fj [[ _< dist(~, J). 
Suppose now that  ~ r J .  Since (• = Foo/J, for every e > 0 there exists 

f e " J ,  ltfll < 1 such that  tf(~)l > dist(~, J ) - e .  By Proposition 1.2, there exist 

~1,~2 E Afj such that [1~1i]2[[~2[12 -< 1 and f (~)  = (~o(S1,... ,Sn)(1,~2>- Hence, 
I I p ~ ( s ~ , . . .  ,sn)i~j l l  >_ dist(~,J)  - e .  Since e > 0 is arbitrary, we finish the 

proof. II 

It should be noted that  Proposition 1.3 is all one really needs to obtain the 

scalar version of Carath6odory or Nevanlinna-Pick interpolation in F ~ .  

We know from [Po5], [Po6] that  the set 7 ) of all polynomials in S~, . . . ,  Sn is 

WOT-dense in ~'oo. Indeed, if f = ~ e ~  a~e~ is in .T ~ and 

fr  := Z r[ala~ea 

for any 0 < r < 1 then SOT- l im~l  f .  = f and [[f~[Ioo <- Hf[[oo (see [Po6]). On 

the other hand, f~ e An. Indeed, since I] ~lol=k a~S~l[ = (~l~l=k [a~[U) ~/2' we 

have 
oo oo 

rkll ~ aaS~ll : Z rk( E laa12)l/2 
k=0 I,t=k k=0 }~t=~ 

oo 

k=O 
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Therefore, ~ e ~  rl~[a~S~ converges in norm, so that f~ �9 ..4,,. Taking into 

account that  P is norm dense in An, the result follows. 

We will use the same notation as above if J is a closed, 2-sided ideal in .A~. 

LEMMA 1.4: Let J C A~ be a 2-sided ideal of A~ and let Jw be the WOT-closed, 

2-sided ideal generated by J in F ~ Then J~ = ~ W O T  and Afj~ = ./~fj .  

Proof." We need to show that ]WOT is a 2-sided ideal in F ~176 Consider r r �9 

F ~ ,  f �9 ]WOT, and let {gi} C J be a net WOT-convergent to f .  

Since J is a 2-sided ideal of ,4~, r162 �9 J for any r,r '  �9 (0, 1) and any i. 

Using the remarks preceding this lemma, it is easy to see, by taking appropriate 

limits, that  r 1 6 2 1 4 9  ]WOT. Now let us show that Afj~ -- Afj. Since J c J~, it is 

clear that  Afj D Afj~. Let f �9 ]WOT, r �9 .T-2, and choose {gi} C J such that  

WOT-limi gi -- f .  If x �9 Afg we have 

(x, f | r = lim(x, gi( S1, . . . , S,)r  = 0. 

Therefore, x �9 Afg~,, which proves that Ha C .N' j .  This completes the proof. 
| 

2. N o n - c o m m u t a t i v e  i n t e rpo la t i on  in F ~176 

Let 74,)E be Hilbert spaces and I be a set of indices with dim/C -- c a r d / =  % 

Denote O~74 :--- @ieI74i where Hi :-- 74, and notice that, under the canoni- 
cal identification | = 74 | ~ (Hilbert tensor product), each operator X C 

B(74 | K:) can be seen as a matrix of operators in B(74), i.e., X = [X~/~]~,~el 

with X~Z E B(74). For any/4 C B(74), we denote 

M~(U) = { [ ~ ]  �9 B(e~n) :  u ~  � 9  �9 I}. 

It is clear now that {u | It=; u �9 14}' = M~(/4') (where'  stands for commutant). 

Let us recall from [Pol] that T = ITs, . . . ,  T,~] is called C0-contraction if T is a 

contraction and 

(2.1) SOT- lim ~ T~T; -- 0. 
k--~oo 

For example, i f  ~ = 1  TiT; <_ pin for some 0 < p < 1, then [T1,..., Tn] is a 

C0-contraction. 

The following result is an extension of Sarason's result [S] and a consequence of 

the noncommutative commutant lifting theorem [Po3] and the characterization 

of the commutant of {SI , . . .  , Sn} from [Po7]. 
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THEOREM 2 . 1  : Let ~2 be a Hilbert space with dim Y~ = ~ and let Af C .T 2 be an 

invariant subspace for S~, . . . ,  S*. I f  T E B(Af  | 1C) commutes with each Xi  := 

PjvSd~v| I~, i = 1, 2 , . . . ,  n, then there is ~(S1 , . . . ,  Sn) := [(~c~,fl(S1,..., Sn)] in 

M , ( F  ~ )  such that III ' (Sl , . . .  ,&)ll = IITII and 

P~v| [u* r  ( & ,  . . . , Sn)  U] = TP:r174  

where P~V| is the orthogonal projection of jr2 | IC onto A/" | IC, and U is the 

flipping operator on g:2. 

Proof'. It is clear that [PARS112r P]VSn [:r is a C0-contraction and, according 

to [Pol], its minimal isometric dilation is [$1, . . . ,  Sn]. Therefore, the minimal 

isometric dilation of [X l , . . . ,An]  is [$1 | I~z,. . . ,  S,~ | Ilc]. According to the 

noncommutative commutant lifting theorem [Po3], there is A E {Si | Ipc;i = 

1 , 2 , . . . , n } '  such that  ][A[[ = [[TI[ and A*IAr| -- T*. Therefore, there exists 

a~,~ E {S1,.. . ,S,~}' such that A = [a~] E MT({S1, . . . ,S~} t) C B(@7~'2). 

Using the characterization of the eommutant of {$1, . . . ,  S,~} from [Po7], we find 

r  E .T ~ such that a ~  = U*r �9 �9 �9 Sn)U, where U is the flipping operator 

on ~-2. Therefore 

A = [U*r  Sn)U] and P:c|162 Sn)U] = TP:c| | 

Notice that  if n = 1 we find again Sarason's result [S]. 

LEMMA 2.2: Let Ti E B(7-[) be such that T := [T1,... ,T,~] is a Co-contraction 

and let fa i l (S1, . . . ,  Sn) E F ~ , a ,  fl E I, be such that [ faz(S1, . . . ,  Sn)]c~,flel is in 
B(@~ ~-2) (3' = card/ ) .  Then [fa~(T1,.. . ,Tn)] E B(@~7-/) and 

II[ /~(X, , . . .  ,Xn)]ll < II[ /~:(&,. . . ,  Sn)]ll. 

Proof." According to [Pol], the minimal isometric dilation of T -- [T1,. . . ,  T,~] is 

[$1 | Is  S,~ | IL] for some Hilbert space s According to Theorem 3.6 from 

[Poh], for any f~Z E .T ~ f ~ ( T 1 , . . .  ,Tn) = Pn(f~,z(S1, . . .  , S n ) |  Is  The 

rest of the proof is straightforward. | 

If ( = ( (1 , . . . , (~)  E C n is such that I~1 := (1~112 + "'" + (,~12) 1/2 < 1, and 

f ( S 1 , . . . ,  Sn) E F ~176 then, according to the F~176 calculus [Po6], we in- 

fer that  1/((1, . . - ,  (4)1 ~ Ilf(S,, . . .  , Sn)[[. There fore , / ( (1 , . . . ,  (n) is an analytic 

function in ~ .  Moreover, we deduce the following. 
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COROLLARY 2.3: If  f=~ E F ~176 ce, fl �9 I, c a r d / =  % and [fc~z(S1,... ,Sn)]~,~el 
is in B(| then q}(r := [f~/~(r is an operator-valued analytic function in 

~ . .  Moreover, supr II (ff)ll < 

A consequence of Theorem 2.1 is the following extension of the Nevanlinna- 

Pick problem to the noncommutative Toeplitz algebra F ~ 

T H E O R E M  2 . 4 :  Let ) q , . . . ,  Ak be k distinct points in ~n and let W1, . . . ,  Wk 

be in B(IC), where 1C is a Hilbert space with dim/(: = 7. Then there exists 

�9 (Sa , . . .  ,Sn) := [r ,Sn)] in M.r(F~176 such that [[~P(S1,...,Sn)]] <_ 1 

and ~(Aj) = Wj, j = 1, 2 , . . . ,  k, if and only if the operator matrix 

( 2 . 2 )  

is positive definite. 

wy; ] 
1 -  (Aj,Ai) J~,j=l,2 ..... k 

Proof: For each i = 1 , . . . , k ,  let ki : =  (Ail,.. . ,)~in) C C n and, for a = 

gjlgJ='" "gjm in F~, let Ai~ : =  ~ijl~ija... ~ijm and A~ = 1. Define 

z~ , :=  E Ai~ea, i = l , 2 , . . . , n ,  

and notice that,  for any r = ~ c ~  a,~e,~ in ~-2, (r zx,) = r 

If r C 5 T M  then {r = (1 , r  Sn)*z~,}, where $1 , . . .  ,Sn are the left 

creation operators on the full Fock space $-2. It is clear that S*zxj = -Ajiz),j for 

any i = 1 , . . . , n ;  j = 1 , . . . , k .  Denote 

A/" := span{z~r : j = 1 , . . . , k }  

and define Xi E B(Af@ K7) by Xi = PxSi[3f @ Itc. Since z x , , . . . ,  zxk are linearly 

independent, we can define T E B(Af | KT) by setting 

(2.3) T*(z),j | h) = zaj | W]h  

for any h E E, j = 1 , . . . , k .  Notice that for e a c h i  = 1 , . . . , k ,  TXi  = XiT.  

Indeed, 

X*T*(z)~j | h) = X*(z~,j | W]h) = S* z)~j | W]h  

= -Ajiz~,j | W~h 

and 

T*X*(z~  | h) = T*(-Ajiz:~j @ h) = -Ajiz)~ | W~h. 
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Since Af is invariant under S*, i = 1 , . . . ,  n, according to Theorem 2.1, there exists 

[r S~)] E M~(F ~) such that P~v| [U*r S,~)U] -- TP~;| 
and 

(2.4) tt [ r  sn)] II = IITII- 

Let us show that  ~ (S1 , . . . ,Sn )  := [r S~)] satisfies ~(Aj) = Wj for 

any j = 1 , . . . , k ,  if and only if 

(2.5) [P~U*r Sn)Vl~] = T. 

To prove this, notice first that U(z~j) = z~j, j = 1 , . . . ,  k, and 

<r Sn)z~j, z~j> : r ~ > .  

Due to these relations, (2.3), and (2.5), it is easy to see that, for any j = 1 , . . . ,  k 

and h, h' C/C, we have 

([V*r Sn)V](z;~j | h), z~j | h') = (z~,  z~,)(V(Ai)h , h') 

= (T(z~j | h), z~j | h') = (z~j | h, z~j | W;h')  

= <z~j, z~)(Wjh,  h'). 

Now, it is clear that  ~(~j) = Wj for any j -- 1 , . . . ,  k if and only if (2.5) hol~is. 

On the other hand, (2.4) shows that  I]~($1,. . . ,  S~)l I _< 1 if and only if ][T]I < 1. 

The latter condition is equivalent to 

(g, g) - (T'g, T'g) > 0 

k for any g = ~-~i=1 z~j | hj in Af | ~. This inequality is equivalent to 

k 

(2.6) E (zx,, z ~ j ) ( ( I -  WjW*)hi, hi) > 0, 
i,j=l 

for any hj E/C. Since 

(z~,,z~,) = ~ , (~ j )  = ~ ~ j ~  
a e ~  

= 1 + (A3,~,) + (Aj,%i)2 + ' "  

1 

1 -- ()~j, Ai>' 
inequality (2.6) holds if and only if the matrix (2.2) is positive definite. This 

completes the proof. | 
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COROLLARY 2.5:  If  n ---- 1 we find again the Nevanlinna-Pick interpolation 

theorem (see [Pic], [N]). 

Notice that the proof of Theorem 2.4 works also for arbitrary families {Aj}jej 

of distinct elements in IB,~, the open unit bail of C n . 

THEOREM 2.6: Let {Aj}je  J be distinct dements in ]~n and let {Wj} jE  J C B(]~), 

where ~ is a Hilbert space of dimension 7. Then there exists ~($1 , . . .  ,Sn) in 

M~(F ~176 such that [[~($1,. . . ,  S,)[I _< 1 and ~(Aj) = Wj for ally �9 J if and only 

if v"/xs wjw; } 
i,'~cJ \ 1 - <Aj, Ai} hi, hj > 0 

for any {hj}j~j  C ]C such that {j : hj ~ 0} is finite. 

Combining Theorem 2.4 with Corollary 2.3, we obtain the following sufficient 

condition for interpolation in the open unit ball of C n. 

COROLLARY 2.7: Let A1,... Ak be k distinct points in ~n and let WI , . . .  , Wk be 

in B(1C). If  the matrix 

(2,7) 
(~j, "~i> J i,j=l ..... k 

is positive definite, then there is an operator-valued analytic function F: ~n --~ 

B(tC) such that 

sup IIF(r -< 1 and F(Ai) = Wj 
r 

for any  j = 1,,, , ,  k, 

Arveson [Ar2] showed that  there are functions F in H ~ (Bn) for which there are 

no f E F ~176 such that f (s  = F(A) for each A E ~n. The next result characterizes 

those functions in H~ which are the image of elements in the unit ball of 

F ~176 

THEOREM 2.8: Let F be a complex-valued function defined on Bn, such that 

IF(r < 1 for all ICl < 1. Then there is f �9 F ~176 IIflloo < 1 such that f(~) = 

F(~), ~ �9 Bn, if and only if for each k >_ 1 and each k-tuple of points A1,. . . ,  Aa �9 

B,~, the matrix 

(2.8) 1 - F(Aj)F(Ai) 

i , j=l, . . . ,k  



Vol. 115, 2 0 0 0  INTERPOLATION AND POtSSON TRANSFORMS 217 

is positive definite. In particular, if (2.8) holds, then F is analytic on Bn. 

Proof." The necessity of (2.8) follows immediately from Theorem 2.4. Conversely, 

suppose that  F satisfies (2.8). Let {Aj}~= 1 be a countable dense set in Bn. 

According to Theorem 2.4, for each k, there is fk E F ~176 with [[fkl[oo _< 1 and 

(2.9) fk(Aj) = F(Aj) for any j = 1 , . . . ,  k. 

Since {fk }~_-1 is bounded and F ~ is a dual space, according to Alaoglu's theorem, 

there is a subsequence {fk.~ }~=1 such that fkm converges in the w*-topotogy to 

an element f E F ~176 ]]fll~ -< 1. Since w* and WOT topologies coincide on F ~ 

and the F~-funct ional  calculus for C0-contractions is WOT-continuous, we infer 

that  

lim fk~(Ajl , . . . ,Ajn)  = f (Aj l , . . .  ,Ajn), where Aj = (Ajl,. . . ,Aj,~). 

Using (2.9), we have l i m m - ~  fkm(Ajl, . . . ,Aj~) = F(Aj l , . . . ,A j~) .  Therefore, 

f(Aj) = F(Aj) for any j = 1 ,2 , . . . .  

We claim that f(~) = F(~) for any ~ E lBn. Let A be an arbitrary point in 

l ~ .  By repeating the preceding argument, there is g E F ~176 IIgfl -< 1 so that 

g(~) = F(~) on the set {Aj}~_ 1U{A}. Since the maps ( ~-~ g(~) and ~ ~-~ f(~) are 

analytic in Bn and coincide on {Aj}~~ which is dense in ]~ ,  we infer that  they 

coincide on B~. In particular, we obtain f(A) = F(A). Since A was an arbitrary 

point in in 11~, we deduce that  f and F coincide on g~. In particular, ~ ~ F(~) 

is a bounded analytic function in ~n. This completes the proof. | 

Condition (2.7) is necessary and sufficient for interpolation in F ~176 but only 

sufficient for interpolation in H~(ll~n). One can use the classical Cauchy for- 

mula for B,~ to obtain a necessary condition for Nevanlinna-Pick interpolation in 

H~176 Recall that  for every f E H~176 and A E ~ ,  

f f (w) da(w) I(A) 
JoB~ (1 - 

where a is the rotation invariant probability measure on 0~,~. Using this formula, 

and a standard argument (e.g. like the one used in Section 3 of [CW]) we can 

check that  if there exists f E H~176 Ilfll~ < 1, such that f(Aj) = wj for 

j = 1 , . . . , k ,  then 

] 
( 2 . 1 0 )  

- . . . . .  k 
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is positive definite. Now, one can easily check that the scalar version of condition 

(2.7) is stronger than condition (2.10) (see for example Lemma 4.1 of [CW]). 

Let J be a w*-closed, 2-sided ideal of F ~162 For any cardinal % the algebra 

MT(F ~) is w*-closed in B(@73 r2) and Mr(J ) is a w*-closed, 2-sided ideal of 

Mr(F~176 Recently, Bercovici [B] proved that if the commutant of a w*-closed 

subspace of B(7-/) contains two isometries with orthogonal ranges, then the sub- 

space has property X0,1, which is stronger than property As o (1). One can use 

this result to show that M~(F ~176 has property A1 (1). 

Another consequence of Theorem 2.1 is the following. 

THEOREM 2.9: For any cardinal % the map ~: MT(FCC)/MT(J ) -+ MT(B(Afj)) 
defined by 

(I)([f~z] + i v ( J ) )  = [P~fJf-~l~J] 

is an isometry. 

Proof: It is enough to show that 

dist([fa~], Mr(J)) = I][PuArjU*s Sn)U]uNj]]], 

where U: )r2 _+ U2 is the flipping operator. For each [9~] C MT(J), we have 

I[[f~ + g~]tl  = l l [U*(f~ + g~)U]ll >_ [I[PuNjU*(I~ + g~z)Uiv]~j]i]. 

Since g ~  E J ,  according to Proposition 1.3, we have P~fjg~zlJvj = 0. Since U is 

an unitary operator with U = U*, it is easy to see that Pu]r J = O. 
Combining this with the above inequality, we obtain 

(2.11) dist ( [ f~] ,  MT(J) ) >_ [l[Pv]~jV* f~Vlv~fj]ll. 

It remains to prove the converse inequality. Since U*f~zU commutes with 

S1 , . . . ,  Sn, and uAfj is invariant to S~,.. . ,  S*, (U*f~U)*, it is clear that  

[ev~vjV* f.zVlv~vj] 

commutes with Puj~jSiIu]~j | for each i = 1, 2 , . . . ,  n. We can apply Theorem 

2.1 to find [ r  e MT(F ~) such that II[r -- I[[Pvnrju*f~zglvJ~J][[ and 

[Puj~jU*~2a~UIu~fj] = [Pv~fjU*f~UIvJ~j]. According to Proposition 1.3, we 

infer that  [r := [r - fa~] e MT(J ). Therefore, 

I[[PuArjU*f~VlvArj]l[ = [l[f~ + r -> dis t ( [ f~] ,  M~(J)). 

Combining this with (2.11), we complete the proof. 1 

Recall that  for each k > 1, Mk(F~ = Mk(F~)/Mk(g) (see [R]). Hence, as 

an immediate consequence of Theorem 2.9, we obtain the following. 
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COROLLARY 2.10: The map ~: F ~ / J  -+ Pj~,F~176162 J given by ~ ( f )  -- P:c, f l~ j  
is a completely isometric representation. 

Let Pm be the set of all polynomials in ~-2 of degree _< m, and denote 

~'~m = ~-~fq ( 5r2 E3P~). Setting J = 5r~~ in Corollary 2.10, we can deduce the 

Carathdodory interpolation theorem on Fock spaces [Po7]. 

COROLLARY 2.11: Let p E Pm be fixed. Then 

dist(p, ~-~m) = [[PpmP(S1,..., Sn)]pr~ [l" 

Let us remark that Theorem 2.9 is no longer true if we replace F ~176 by the 

noncommutative disk algebra .A,~ and J is a closed, 2-sided ideal of An. To 

see this, let A E C ~ be of norm one and let J := {~ E An: r  = 

0 a n d  (r = 0}. It is easy to see that Afj is the span of 1 and so is Afj~ 

(see also Example 3.6). Then J~ = {r C F~176 (r = 0}. If one takes a 

polynomial p E P such that (p, 1) = 0 but p(A~,..., AN) r 0, then dist(p, J)  > 0 

but dist(p, J~) = 0. Therefore, 

dist(p, J)  ~ dist(p, Jw) = ILPw~ flN~ II = IIPN~IIH~ II. 

However, we will show that A n / J  is completely isometrically isomorphic to 

PHj.AnIArj, for certain closed ideals J of .An. 

PROPOSITION 2.12: Let A1,... ,Ak E ]~ and define 

J = {v c A , :  ~(~j) = 0 for every j = 1, 2 , . . . ,  k}, and 

J~o = {qo E F~:  ~(Aj) = 0 for every j = 1, 2 , . . . ,  k}. 

Then the map ~: A n / J  --+ P~cjA,~IHj defined by ~ ( f  + J) = P]~fl~J is a 

completely isometric representation. 

Proof: According to Corollary 2.10 and Lemma 1.4, for any f E .AN, 

dist(f,  J~) = II P~J~ f l ~ o  II : IIP~j flx~ II. 

Therefore, it is enough to prove that dist(f,  J~) = dist(f,  J) .  Let us define 

q): A , / J  -4 F~176 by ~(qo + J)  = qo + J~. Notice that r is contractive. We 

shall prove that  for every ~o E F ~ with ]l~ + Jwll = 1, there exists r E An such 

that ][r + Jl[ = 1 and ~ ( r  + J)  = ~ + J~o. 

Assume that  I[~[I = [[qo + JwH = 1 and find ~k E An such that [[qokl[ < 1 

and qok ~ qo in the WOT. Since A n / J  is finite dimensional, we assume (after 
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passing to a subsequence) that ~k + J converges to ~b + J in the norm of A n / J  

for some r E An. Then IIr < 1 and there exists a sequence Wk �9 J such that 

~k + r/k ~ r in the norm topology of An. Then ~/k = (r/k + ~k) -- qOk --~ ~b - 

in the WOT o f F  ~ .  Since r/k �9 J C J~ for each k and since J~ is WOT- 

closed, we have that ~b - ~o �9 J~. Therefore, ~ + J~ = r + J~o = q)(r + J).  Since 

dim A n / J  -=- dim F ~ / J ~ ,  it is clear now that ff~ is isometric. The argument works 

also when passing to matrices, so the map q) is completely isometric. | 

Combining Theorem 2.4 with Proposition 2.12, we infer the following 

Nevanl inn~Pick interpolation theorem for the noncommutative disc algebra .An. 

For simplicity, we consider only the scalar case. 

COROLLARY 2.13: Let ,~1,... ,)~k �9 ~n,  and W l , . . .  ,W k �9 C. Then the matrix 

17 ] 
1 - (Aj, Ai)J i,j=l . . . . .  k 

is positive definite i f  and only if  for any e > 0 there exists f �9 A , ,  Ilfll~ _< 1 + ~, 

such that f(Ai) = wj for every j = 1 , . . . ,  k. 

3. P o i s s o n  t r a n s f o r m s  a n d  v o n  N e u m a n n  inequa l i t i e s  

In [Po9], the second author found an elementary proof of the inequality (1) based 

on noncommutative Poisson transforms associated to row contractions. In this 

section, we will recall this construction (see [Po9, Section 8]) in a particular case 

and use it to obtain new results. 

As in [Pol], T = [T1, . . . ,  Tn] is called C0-contraction if T is a contraction and 

(3.1) SOT- lim E ToT* = O. 
k--+oo 

,~e~ ,lal=k 

Recall that  the sequence {~laJ=k TAT*: k >_ 0} of positive operators is non- 

increasing, and that (3.1) holds if and only if }-~to1= k IIT~hll 2 --+ 0 for every 

h C T t .  

Suppose that  T = IT1, . . . ,  Tn] is a C0-contraction and let 

Since 

7t 

, 1 
:___ - 

i=1 

E 2 * * * 

l~ l~ Iol=k+l 
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it is clear that  ~ e ~  T~A2T* = In  - limk-+~ Elal=k+l TaT* ~- IT-l. 

The Poisson kernel K = K(T)  associated to T = IT1,. . . ,  Tn] is the linear map 

K: 7 / ~  5 r2 | 7/ defined by Kh = E e~ @ AT[*h. 

Since ~ T(~A2T * = In,  K is an isometry. It is easy to check that, for each 

�9 (s* | I ) K h  = KT*h.  Hence, for every . , Z  �9 

(3.2) K*[S S; O = ToTZ 

The map ~: B(5 r2) ~ B ( n )  defined by ~(A) = K*[A | I]K is clearly unital, 

completely contractive (hence, completely positive), and w*-continuous. More- 

over, for each a,/3 �9 F~, ~(S~S*~) = T~T~. The restriction of �9 to F ~176 which 

is denoted by ~T, provides a TOT-continuous F~176 calculus for the 

C0-contractions T = IT1,. . . ,  Tn], which is a particular case of [Po6]. That  is, 

(3.3) ~T: F ~  --+ B(H) satisfies ~T(qz(S1,.. . ,S~)) = ~(T1, . . . ,T~)  

for every ~ E F ~176 
Suppose now that T = [T1,... ,Tn] is a row contraction. For each 0 < r < 1, 

let Kr = K~(T) be the Poisson kernel associated to [rTx,... rT~], which is clearly 

a C0-contraction. Let C* ($1 , . . . ,  S,~) be the C*-algebra generated by s x , . . . ,  s,~, 
the extension through compacts of the Cuntz algebra (9,~ (see [Cu D. The Poisson 

transform associated to T = IT1,. . . ,  T~] is the linear map 

(3.4) (I)T:C*(S1,.. Sn) -+ B(7/) defined by ~T( f )  = lim K*[f | I]Kr 
�9 ~ r - - + l  

(in the uniform topology of B(7/)). It is easy to see that  r is unital, completely 

contractive, and for every a, f l e  F+n, gPT(S~S~) = T~T~. Inequality (1) from the 

introduction follows by restricting (I} T t o  ~A[ n .  

A simple consequence of the noncommutative Poisson transform is the 

following result which turns out to be crucial for the rest of this paper. 

PROPOSITION 3.1: Let T = [T1,...,Tn] be a Co-contraction with its Poisson 

kernel K, and let .hf be a subspace of j:2 invariant under S~, . . . ,  S*. If K takes 

values in A/ | H, then there exists a unital, completely contractive, w *-continuous 

map ~: B(Af) -+ B(7/) such that for every a,/3 e F~, r = T~T~, where 

Bk = PArSk[~ for any k = 1, . . .  ,n. 

Proof: Since A; c $-2 is an invariant subspace of S~ , . . . ,  S,~, for every a, t3 e F~n, 

PArS~S}IN = BaB*~. By hypothesis, K = (P~ | I )K.  Hence, and according to 
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(3.2), for each a,/~ �9 I~ ,  we have 

T~T~ = K*[SaS~ | I]K = K*(P~f | I)[S~S*~ | I](P~r | I )K 
(3.5) 

= K*[P:cS~S~P~r | I]K = K*[B~B*~ | IJK. 

To complete the proof, define (I): B(Af) --+ B(7/) by r = K* [A | I]K. | 

Remark 3.2: If T = [T1,... ,Tn] is a contraction and its Poisson kernel K~ takes 

values in Af| every 0 < r < 1, then there is a unital, completely contractive 

map (I): C*(B1, . . .  ,B~) -+ B(7-/) satisfying ~(B~B;) = TaT~ for all c~,~3 �9 F~. 

Proof." It follows from (3.5) that 

iim K:[B~B*~ | I]K~ = lim rl~lT~rl~iT~ = T~7~. 
r--+l r--+l 

Hence, the map BoB;  ~-~ Tc~T~, defined on span{BoB; : a,~3 �9 F~n}, is 

completely contractive. By [Arl], it can be extended to a unital, completely 

contractive map (I): C*(B1, . . . ,  B~) --+ B(7/) satisfying ~(B~B~) = T~T~ for all 

To illustrate Proposition 3.1 and Remark 3.2, we will consider a row contraction 

T -- [T1,. . . ,  T~] satisfying the following commutation relations: 

(3.6) TjTi = AjiTiTj for every 1 <_ i < j _< n, 

whereAij E C f o r  l _ < i < j _ ~ n .  

Example 3.3: There exists a subspace Af = Af({Aij}) of 9 v2, invariant under 

S~' , . . . ,  S*, such that  the operators Bk = PNSk[~f, k = 1, . . .  ,n, satisfy (3.6) 

and for every row contraction T = [T1,... ,Tn] satisfying (3.6), there exists a 

unital completely contractive linear map (I): C*(B1, . . . ,  Bn) --+ B(7-/) such that 

O(B~B;) = T ~  for any a, j3 e F-~. 

Proo~ Fix k;~c N, and consider a = gilgi~ "" "gi~ E F~ satisfying il _< i2 _< " "  _< 

ik, and a permutation ~r E Hk on {1,2, . . .  ,k}. Then, from (3.6), 

T,~(~) = e~(~)T~, where e.(~) := U Ai,(j)i.(~) 

and ~r(a) := gi.(1)gi.(~) ""gi~(~). Let Af({Aij}) be the subspace of ~-2 defined by 

Af({Aij}) := s-P-~{ E "e,r(a)e~(a): c~ = gilgi2 ""gi, E F~n,ii ~- "" ~- ik, k E N } .  
7rErIk 
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It is easy to see that  if T = [T1,... , Tn] is a C0-contraction and satisfies (3.6), 

then its Poisson kernel takes values in Af({Aij}) | 7/. Indeed, 

k~-~O c*:9il ""9ik ?rEYXk k : 0  ~ : g i l  ""glk 
i l ~ . , . ~ i  k i l ~ . . . ~ i  k 

where v~ = ~ e n k  ~(~)e~(~) �9 Af({Aij}). One can verify directly, from the 

definition of Af({)~ij}), that this space is invariant under Si ' , . . .  , S*, although 

it is easier to check that  N({)~ij}) = Afj, where J is the WOT-closed, 2-sided 

ideal in .T ~ generated by { e j | 1 7 4  1 <<_ i < j < n}. Then, from 

Proposition 1.3, the Bk's satisfy (3.6). The rest of the statement of Example 3.3 

is an immediate consequence of Remark 3.2. | 

The case where Aj~ = 1 for 1 <_ i < j < n appears in lAth], [Po9], and [Ar2]. In 

this situation, condition (3.6) means that the Ti's are commuting and A/'({Aji}) 

is the symmetric Fock space. If ,kji = -1  for 1 < i < j < n, then the Ti's are 

anti-commuting and Af({Aji}) is the anti-symmetric Fock space. 

Example 3.4: If Jk is a WOT-closed, 2-sided ideal generated by some elements in 

span{e~: lal = k}, then a similar result to Example 3.3 holds for any contraction 

T = IT1,. . . ,  T~] such that  r  T~) = 0 for each r C Jk. 

In Section 4, we will consider the Foo-functional calculus associated to row 

contractions satisfying (3.6), or as in Example 3.4. 

Let r �9 Foo and let Jr be the WOT-closed, 2-sided ideal generated by r in 

Foo. IfAfj,  # {0}, then there is a nontrivial C0-contraction T -- [T1,. . . ,  Tn] such 

that r  ,Tn) = 0. Indeed, define Ti := PHj SiI~cj~. According to [Poll, 

it is clear that  T = IT1,. . . ,  T,] is a C0-contraction, since the Foo-functional 

calculus associated to C0-contractions is WOT-continuous. It is easy to see that 

r  T,) = PArj, r  Sn)l~Vj, = 0 (see also Lemma 4.4). 

LEMMA 3.5: Suppose that T = IT1,. . . ,  T,~] is a Co-contraction with its Poisson 
kernel K, and that J is a WOT-closed, 2-sided idea /of  Foo such that for every 

~ J,  ~(T1, . . . ,  T~) = O. Then K takes values in Afj | 7/. Consequently, 

N j  # (0). 

Proof'. For any polynomial p C :P, p = ~ a~e~, we have 

= (k,p(T1,... ,T , )Ah)  
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for any h, k C 7-/. Since the F~-funct ional  calculus for C0-contractions is WOT- 

continuous and 7 ) is WOT-dense "in F ~ we deduce that for any ~ C J and 

h, k E 7/, 

( g k , ~  @ h) = (k ,~ (T1 , . . . ,Tn)Ah)  = O. 

Since M j  is the closure of J in 5 r2, we see that for every k C 7-/, 

K k � 9  (A/[j | H)  • = A f j |  

This completes the proof. | 

If T = [T1, . . . ,  Tn] is a C0-contraction, then 

J1 := {~ E F~176 ~a(T1,... ,Tn) = 0} = Kerk0T 

is a WOT-closed, 2-sided ideal of F ~162 Similarly, 

J2 := {~ E .An: ~(T1, . . .  ,T,~) = 0} = Ker (I)T 

is a closed, 2-sided ideal of An. Lemma 3.5 is stated for F ~176 but it holds true also 

for An. Therefore Afj 1 ~= {0} and .fkfj2 r {0}. Let us remark that if IT1, . . . ,  T~] 

is just a contraction (not necessarily Co), then Afj 2 may be zero. 

Example 3.6: (Point evaluations) Let Ai �9 C, i = 1 , . . . , n ,  be such that  
n ~i=1  ]Ail 2 < 1. Then A = [A1,..., An] is a C0-contraction, and hence, Jw := 

{~ E F ~176 : T(A1,. . . ,An) = 0} is a WOT-closed, 2-sided ideal of F ~ .  It is 

known that  A/j~ = span{z~} where z~ = 1 + ~-'~k>l(Alel + . . .  + Anen) | and 

~(A1, . . . ,  A,~) = (~, z~) for every ~ �9 F ~176 (see [APo], [Ar2], and [DP1]). Notice 

that  if ~ ' ~ 1  IA~I 2 = 1, then J = {~ E ,4,~: ~o(A1,..., A~) = 0} is a closed, 2-sided 

ideal of An but one can check that A/'j = {0}. 

Combining Proposition 3.1 and Lemma 3.5, we obtain the following. 

THEOREM 3.7:  Let T = [T1,... ,T,~] be a Co-contraction, and let J be a WOT- 

closed, 2-sided ideal o f F  ~176 such that for every ~ C J, ~(T1, . . .  ,Tn) = O, then 

there exists a unital, completely contractive, w*-continuous map ~: B(jV'j) -+ 

B(7-l) such that for every a, fl C F~, r = T~T~, where Bk = PAfjSkINj, 

k =  l , . . . , n .  

One can easily see that there is an An-version of this theorem corresponding 

to closed, 2-sided ideals in .An, J C Ker r  with Afg ~ {0}. Let T = IT1, . . . ,  Tn] 

be a contraction, and let J C Ker (I)T be a closed, 2-sided ideal of ,4n such that  

Afj r (0}. Notice that  Remark 3.2 holds true if we take Af = Afj. 
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Given T = IT1,... ,Tn] a Co-contraction with Poisson kernel K,  the best von 

Neumann inequality given by Proposition 3.1 comes from the smallest subspace 

AfT of 9 v2 which is invariant under S~ , . . . ,  S~ and such that K takes values in 

AfT | It is not hard to see that Aft- = span{(T*k, Ah)e~: h,k C 7t;~ C F+~}. 
First notice that  AfT is the smallest Af such that K takes values in Af | 9 r2, and 

then notice that  AfT is invariant under S~ , . . . ,  S*. 

4. W(B1, ..., Bn) a n d  F~176 J-functional calculus for r o w  c o n t r a c t i o n s  

In this section J will be a w*-closed, 2-sided ideal of F ~176 Recall that  Afj is 

the orthogonal complement of the image of J in 5 r2 and that Bk --- PA5 Sk Ia5 

for k = 1 , . . .  ,n. We define W(B1, . . . ,B~)  to be w*-closure of of the algebra 

generated by the Bk'S and the identity. 

We will prove that F ~ / J  is canonically isomorphic to W(B1, . . . ,  Bn). We will 

describe the commutant of W(B1 , . . . ,  B,~) and will show that  W(B1, . . . ,  B~) is 

the double commutant of {B1, . . . ,  B,~}. We will show that W(B1 , . . . ,  B,~) has 

the A1 (1) property and hence the w* and T O T  topologies agree on this algebra. 

Finally, we will develop a F~/J-functional calculus for row contractions. 

A direct consequence of Proposition 1.2 and Corollary 2.10 is the following. 

THEOREM 4.1: The map ~11: F ~ / J  -~ B(.hfj) defined by 

�9 (~ -t- J) = PAf~p(S1,..., Sn)IAzj 

is a completely isometric isomorphism onto PA5 F ~  IAS, and a homeomorphism 
relative to the w*-topology on F~ and the WOT-topology on PArjF~IAS. 

Proof: Since the fact that  �9 is a completely isometric homomorphism was 

already proved in Corollary 2.10 (see also Section 5), we only have to prove that  

ffJ is a w*-WOT homeomorphism. 

By Proposition 1.2, qoi + J --~ ~o + J in the w* topology iff for every (1, (2 C Afj, 

(qoi | ~1,~2) -+ (~ | ~1,~2). This is clearly equivalent to PAhqoilarj -~ Parj~ola; J 
in the weak operator topology. | 

Using again the noncommutative commutant lifting theorem [Po3], we can 

prove the following. 

PROPOSITION 4.2: The algebra PAfj F~176 IJ~fJ is the TOT-closed algebra generated 

by PAh SiI~f j , i = 1,...  , n, and the identity. Moreover, we have 

(4.1) PMjF~176 = {PNjU*F~176 ' =  {P~fjF~IM~} ". 
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Proos We first show that P N j F ~ [ ~ j  is weakly closed. Notice that Afj is an 

invariant subspace of U*S~U for each i -- 1 , . . . ,  n, and 

[PAfj U ' S 1  UIA/'j,  �9 �9 �9 PAfj U*SnUIAfj] 

is a C0-contraction with the minimal isometric dilation [ U * S 1 U , . . .  , U*SnU]. Ac- 

cording to the commutant lifting theorem, X E {PjvjU*SiUIAr J : i = 1 , . . . ,  n} ~ 

if and only if X = P]cjY[]~j for some Y C {U*SIU, . . . ,  U*SnU}'. Using [Po7], 
we get Y = f ( S 1 , . . . , S n ) ,  f C .T ~ .  Now, it is clear that P]ijF~[]Cj = 

{P~cjU*F~U[Nj} ~ and, hence, P2cjF~]]Cj is a WOT-closed algebra. 

Since the polynomials in $ 1 , . . . ,  S~ are WOT-dense in F ~162 it is clear that  

P]Cj F~I]gj  is the WOT-elosed algebra generated by P]cj Si l~j ,  i = 1 , . . . ,  n, and 

the identity. The second equality in (4.1) follows in a similar manner. | 

PROPOSITION 4.3: The algebra W ( B 1 , . . . ,  B~) has property A1 (1). Moreover, 

Proof: Let f E VV(B1, . . . ,Bn) .  satisfy Ilfll = 1. Since 

1 4 2 ( B 1 , . . . ,  Bn), - Cl(./V'j)/• Bn), 

for each e > 0, find g C el (Afj)satisfying [IgH-~ l §  and f = g§  B,~). 

Let iHj: Afj --+ ~2 be the inclusion and notice that (i~j)* -- PXj- It is easy 

to check that iArj o g o Pj~j C z J  C c1(J:2). Then, by Proposition 1.2, there 

exists ~ , r  C Afj satisfying H~[[2[[r -~ (1 § e)[]gl[ _< (1 + e) 2 such that,  for 

every v I E F ~ ,  (i]r o g o P]cj, ~?) = (~? | ~Ol, (f12). Now, for each noncommutative 

polynomial p C P,  we have 

( f ,p(B1, . . . ,  B~)) = (g,p(B1,..., B,~)) = (g, PNjp(S1,..., & ) l ~ , >  

: (iArj ogoPNj ,p(Si , . . . ,Sn))  = ~p@~,~b) 

: (p(S1,..., Sn)V, PXjr = (PNjP(SI,.. . ,  Sn)[Hj~, r 

~- <p(Bl , . . .  , Bn)~0,r 

Since f is w*-continuous, we prove the A1 (1) property. The last part of the 

theorem follows from Proposition 4.2. | 

Let J be the w*-closed, 2-sided ideal of F ~ generated by $2, $ 3 , . . . ,  S~. It is 

easy to see that  Afj is the closed span of e~ k for k > 0, and that  B2 . . . . .  

B,~ = 0. Hence, )42(B1,.. . ,  B~) = W(B1), where Ble~ k = e~ +I. Since B1 is a 

unilateral shift of multiplicity one, we use Proposition 4.3 to give an alternative 
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proof of the well known fact that W(B1) has property A1 (1). Moreover, it is also 

known (see [BFP, Theorem 4.16]) that I/V(B1) does not even satisfy property A2. 

In that sense, Proposition 4.3 is best possible. 

Let us recall from [Poll that a contraction IT1, . . . ,  Tn] is called completely 

non-coisometric (c.n.c.) if there is no h E 74, h r 0 such that 

E IlT*hll2 = 11h112' for any k e {1 ,2 , . . . } .  
I~l=k 

Let T = [T1, . . . ,T~] be a c.n.c, contraction and let 

Or: F ~ --+ B(74), O2T(f) = f (T1 , . . .  ,Tn), 

be the F~ calculus associated to T. In this section, we prove that  

if J is a WOT-closed, 2-sided ideal of F ~ with J C KerkOT, then there is a 

WOT-continuous, F ~ / J  functional calculus associated to T. 

LEMMA 4.4: Let B = [BI , . . . ,Bn]  and let ~B be the F~-functional calculus 

associated to it. Then 

1 4 2 ( B 1 , . . . , B n ) = ~ B ( F  ~)  = { f ( B 1 , . . . , B n )  : f e F ~ } .  

Proof: According to Proposition 4.3, it is enough to prove that  

(4.2) f ( B 1 , . . . ,  BE) = PArj f (S1 , . . . ,  S~)[Arj 

for any f E 9 r ~ .  Since Bi = P~fjSil~fj, (4.2) holds for polynomials, and con- 

sequently for elements in the noncommutative disc algebra An. Since B = 

[B1,.. .  ,Bn] is a C0-contraction, according to the F~176 calculus, we 

have 

f ( B 1 , . . . ,  B~):  = SOT- lira f r ( B 1 , . . . ,  B~) 

= SOT- lira P~fa fr(S1, �9 �9 �9 Sn)tXa -- PNj f (S1,. �9 �9 Sn)Lhfa 
r--+l 

for any f E F ~ .  | 

THEOREM 4.5: Let T = [T1,... ,Tn] be a c.n.c, contraction and let 

q~T: F ~ -+ B(74), q~T(f) : f ( T 1 , . . . , T n ) ,  

be the F~-funct ional  calculus associated to T. I f  J is a WOT-closed, 2-sided 

ideal o f F  ~176 with J C Ker~T, then the map 

(4.3) q2T,j: ),4](B1,...Bn) --+ B(74); qJT, j ( f ( B 1 , . . . , B n ) )  :-= f ( T 1 , . . . , T n ) ,  
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is a WOT-continuous, completely contractive homomorphism. 

In particular, for any f E F ~176 

IIf(T1,... ,Tn)ll _< IIf(B1,. . . ,  B~)II = dist(f,  J) .  

Proof." We prove first that ~PT,J is WOT-continuous. Let fi, f E J:~ with 

W O T - l i m f i ( B 1 , . . . , B n )  = f ( B 1 , . . . , B n ) .  

According to Lemma 4.4, we infer that WOT- lim~ PHjf~IHj = P z j f l x c j .  Apply- 

ing Proposition 4.1, we infer that 

(4.4) w*-lim(fi + J)  = f + J. 

For each h, k E 74, define (I)(f) :-- (LVT(f)h, k). Since g2T is WOT-continuous, 

qb is WOT-continuous, and hence w*-continuous. On the other hand, kV(J) = 0, 

so that if) E •  Since (4.4) holds, we deduce that limi (I)(f~) -- (I)(f), which is 

equivalent to 

lim(f~(T1,...  ,T~)h, k) = ( f (T~ , . . . ,  T~)h, k) 
Z 

for any h, k E 7/. 

According to the von Neumann inequality [PoS], for any r E J C Ker LOT, we 

have 

I I f (TI , . . . ,T~)I I  = II(f + r  <-Ill + r 

Using Theorem 4.1, we infer that 

I l f (T~, . . . ,  Tn)It < dist(f,  J)  = iIP~'j fINj II 

= IIf(B~,... ,  B,)II. 

In a similar manner, one can prove that ~PT, J is a completely contractive homo- 

morphism. This completes the proof. II 

The following F~176 is related to Example 3.3. 

COROLLARY 4.6: Let T = [T1,...,T,~] be a c.n.c, contraction satisfying the 

following commutation relations: 

TjTi = AjiTiTj for every 1 < i < j <_ n, 

where Aij E C for 1 <__ i < j <_ n. I f  J is the WOT-closed, 2-sided ideal generated 

by { e j | ei - )~ j ~ e~ | e i : 1 <_ i < j <_ n} in 3 r~176 , then there is a W O T-cont inuous 

functional calculus given by (4.3). 
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5. R e p r e s e n t a t i o n s  o f  q u o t i e n t s  o f  dua l  a lgebras  

Recall that  an operator algebra is a closed subalgebra of B(7-/) and that a dual 

algebra is a unital w*-closed subalgebra of B(7/). In the late 60's, Cole (see [BD, 

pages 270-273]) proved that quotients of uniform algebras are operator algebras. 

Shortly after, Lumer and Bernard proved that quotients of operator algebras are 

isometrically isomorphic to operator algebras. In [Pi, Chapter 4] Pisier noted 

that these methods also show that quotients of operator algebras are completely 

isometrically isomorphic to operator algebras. In this section we will follow these 

ideas closely to obtain simple representations of quotients of dual algebras. As an 

application, we give an alternative proof of Corollary 2.10 that does not depend 

on the commutant lifting theorem of [Po6]. 

PROPOSITION 5.1: Let A be a unital, w*-closed subalgebra of the bounded 

operators on a separable Hilbert space ~ such that for each k 7_ 1, Mk(A) 

has property A1 (1), and let d be a w*-closed, 2-sided ideal of A. Then there 

exists a subspace s C f2 | 7t such that the map ~ : A / J  -4 B(s defined by 

qd (a 4- J) = PE (I~ | a)[e is a completely isometric representation. 

Proolq Let z E Mk(A)/Mk(J) ,  ]]xl[ = 1. We claim that for every e > 0, there 

exists a subspace E c f2k(?-/) such that the map 

(5.1) kgx: A / J  --+ B(E) defined by ffJx(a + J)  -- PE(IM~ ~ a)lE 

is a completely contractive homomorphism which satisfies II(IMk | qd~)(X)I I > 

1 -- e. If we take direct sums (~,~>0 ~x, where x runs over the unit ball of 

Mk(A)/Mk(J) ,  k > 1, and e > 0, we get a completely isometric embedding of 

A/J .  It will be clear from the construction that it is enough to take countably 

maps kg~, so the proposition follows. 

Let e > 0 and write x = y + M k ( J ) ,  where y = (Yij) E Mk(A). Find f E 

(Mk(A)/Mk(J))* = Mk(g) • IIf]l ----- 1, such that (x, f~ = 1. Since (• = 

Mk(J) • we can find g E • Hg[I -< 1, such that I(Y,g) - (Y,f)[ < e. 

Then I(Y,g)] >- 1 - e. Since Mk(A) has the AI(1) property, find ~ , r  e ~(7-/), 

1[~112 = HCH2 = 1 such that  for each z/E Mk(A), (g, zl) = (~)qo,~;). 

Let E1 = span{~/~o : ~ C Mk(g)} C ~2k(?-/), E2 -- s--p-~{~qo : ~ C Mk(J)} C 

El,  and E -- E1 O E2. Since E1 and E2 are invariant under Mk(A), the map 

~E: Mk(A) -+ B(g2k(7/)), defined by iI~E(~l) = PEnilE, is a completely contractive 

homomorphism that vanishes on Mk(J). Hence, the map 

qG(a 4- J) = CE(IMk | 
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of (5.1) is a well defined completely contractive representation. 

Since ~ �9 El,  r �9 E~,  and E~ is invariant under the adjoints of Mk (A), it is 

easy to check that (g, y) = (y~, r  = (YPE(P), PE(r Hence, 

I(OE(Y)PE~,PEr = I(g,Y>l >-- 1 -  e. 

For each i , j  <_ k, let Eij = d2E(eij | 1A). The Eij's are matrix units on E, 

which decompose E = 7-/1|174 '@7/n. Eii is the orthogonal projection onto 7-// 

and Eij is a partial isometry from 7-/j onto 7/i. Note that Eij commutes with the 

range o f~x ,  Eij : E i i E i l E l j E j j ,  and d2E(eij| : d2E((ei j |  |  : 

d2E(ei j@IA)~E(IMk @Yij) : Eijk~x(Yij+J) �9 Let ~oj = EjjPE~O and r = EiiPEr 

: E (~E(eij (9 Yij)PE~, PE~b) 
i,j<_k 

= E (Eijg~(xij)PE~,PE%b) 
i,j<k 

: E (q2x(xij)E'J~j'Elir 
i,j<_k 

: | 

Then 

w h e r e  ~5 = ( E l l ~ O l , . . . ,  Elkqgk) �9 ek2(E), ~b = ( E l l ~ b l , . . . ,  Elk~)k) �9 ek2(E). Since  

I1~112 = ~j<_k IIEij~Jl122 <<- ~j<k II~jll~ = IIPE~II22 < 1, and, similarly, 11r < 1, 

we get 

[](Ik | ~I,.)(x)[[ > ]((Ik (9 ~ ) ( x ) ~ , @ [  = [(OE(Y)PE~O, PEr >_ 1--e, 

which proves the claim. Finally, notice that the map k0~ was determined by 
g E • C (Mk(A)).. Since (Mk(A)). is separable for each k > 1, it is 

enough to take only countably many maps. | 

The proof of the next corollary follows easily from the proof of Proposition 5.1. 

Notice that  property A1 (1) can be used to give more explicit representations of 

quotient algebras than those appearing in Theorem 3.2 of [CW] and Theorem 0.3 

of [Mc]. 

COROLLARY 5.2: Let A be a unital, w*-closed subalgebra orB(7~) with the A1 (1) 

property and let J C A be a w*-closed 2-sided ideal. Then for every T E A, 
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where E~ = s~-a-fi{aqo: a �9 A} (3 ~ { b ~ o :  b �9 J} c 7-/. 

Moreover, it is well known that if A C B(7-/) is a unital w*-closed subalgebra of 

B(7-/), the ampliation A (~176 = {Ie2 | a: a �9 A} C B(g2 | H) is a unital w*-closed 

subalgebra of B(62 | H) with the Al(1) property (see e.g., [Az, Section 2]). Since 

Mk(A(~176 = (Mk(A)) (~176 it follows that M~(A (~176 has the A1(1) property for 

every k > 1. 
Applying Proposition 5.1 to A (~ and noticing that Ie2 @ A (~176 is canonically 

isomorphic to Ie2 | A, we obtain the following. 

COROLLARY 5.3: Let A C B(7-l) be a unital, w*-closed subalgebra of B(7-/) and 

let J C A be a w*-closed 2-sided ideal. Then there exists a subspace s C g2 | 7-I 
such that the map ~: A / J  --+ B(C) defined by ~(a + J) = Pe(Ie2 | a)lE is a 

completely isometric representation. 

An alternative proof for Corollary 2.10, i.e., (I): F~176 -+ PHaF~176 defined 

by (I)(f) = P~fjf[:gj is a completely isometric representation, can be obtained 

using Theorem 3.7 and Corollary 5.3 as follows. 

Alternative Proof of Corollary 2.10: From Corollary 5.3 (or from Proposition 

5.1 if we use that  F ~ has property Au o (1)) there exists a subspace s C g2 | )r2 

such that  the map ~: F~176 -~ B(s defined by ~(r~) = PgTt{g , is a completely 

isometric homomorphism. Let ~o E s and notice that {Ie2 | Sj: j <_ n} satisfies 

(2.1). Then 

�9 2 * 2 II~(S~ + J)*qoll 2 = ~ ItPg(I~: | S~)~II2 < ~ !l(I~2 | S,)qotl 2 -~ O. 
I,~t=k I~,l=k I~1=k 

This shows that  [~($1 + J ) , . . . ,  ~(S~ + J)] is C0-contractive. 

Notice that  for each ~0 �9 J, qo (~ (S l+J ) , . . . ,  cg(S,~+g)) = ~(q0+J) = 0. Then, 

from Theorem 3.7, there exists a unital, completely contractive, w*-continuous 

map (I)g: B(Afj) -+ B(E) satisfying ~K(B~) = ~(S~ + J) for every a e F~n. 

Recall that  B~ = ~(S~+J). Hence, for each a �9 ID~, ~(S ,+J )  = ~KOi~(So+J). 
Using the w*-continuity of the three maps, we obtain the following commutative 

diagram: 

F~176 B(s 
�9 

B(Xj) 

Since (I)g and ~ are completely contractive, and since ~ is completely isometric, 

we conclude that  (I) is completely isometric. | 
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Corollary 2.10 and the following simple lemma can be used to derive Theorem 

2.4. Thus, we can prove this result without using the commutant lifting theorem 

of [Po3]. Notice that, using a standard w*-continuity argument, we can assume 

,._at the Wj's of Theorem 2.4 are N x N matrices. We leave the details to the 

reader. 

LEMMA 5.4: Let Aj = (Ajl . . . .  ,Ajn) E ]~n, j = 1 , . . . , k ,  be k different points 

in Bn. For each io E {1 , . . . , k}  there exists ~io E F ~176 such that ~io(Ai0) = 1 

and ~io(Aj) = 0 whenever io ~ j .  Consequently, given W1,. . .  ,Wk EMlv,  there 

exists ~ e M N ( F  ~176 such that ~(Aj) = Wj for every j = 1, . . .  ,k. 

Proof." Fix i0 C {1 , . . . , k} .  For each j # i0 find q E { 1 , . . . , n }  such that 

Aioa ~ Ajq and define 0j ----- Sq  - AjqI. Then 0j(Aio) = Aioq - Ajq r 0 and 

Oj(Aj) -- O. Let r -- | Then r r 0 and r = 0 whenever j r i0. 

_A____I r If W1, Wk C MN, then ~ = ~i<k Wi | ~i E M N ( F  ~176 Define ~io -- r . . . .  ' 

satisfies ~(Ai) = Wi for i < k. II 
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